login
A065423
Number of ordered length 2 compositions of n with at least one even summand.
12
0, 0, 2, 1, 4, 2, 6, 3, 8, 4, 10, 5, 12, 6, 14, 7, 16, 8, 18, 9, 20, 10, 22, 11, 24, 12, 26, 13, 28, 14, 30, 15, 32, 16, 34, 17, 36, 18, 38, 19, 40, 20, 42, 21, 44, 22, 46, 23, 48, 24, 50, 25, 52, 26, 54, 27, 56, 28, 58, 29, 60, 30, 62, 31, 64, 32, 66, 33, 68, 34, 70, 35, 72, 36, 74
OFFSET
1,3
FORMULA
G.f.: x^3*(x+2)/(1-x^2)^2.
a(n) = floor((n-1)/2) + (n is odd)*floor((n-1)/2).
a(n+2) = Sum_{k=0..n} (gcd(n, k) mod 2). - Paul Barry, May 02 2005
a(n) = Sum_{i=1..n-1} (-1)^i (floor(i/2) + ((i+1) mod 2)). - Olivier Gérard, Jun 21 2007
a(n) = A210530(n,4)/2 for n>2. - Boris Putievskiy, Jan 29 2013
a(n) = (3*n-4-n*(-1)^n)/4. - Boris Putievskiy, Jan 29 2013, corrected Jan 24 2022
a(n) = A026741(n)-1. - Wesley Ivan Hurt, Jun 23 2013
E.g.f.: 1 + (x - 1)*cosh(x) + (x - 2)*sinh(x)/2. - Stefano Spezia, Dec 17 2023
EXAMPLE
a(7) = 6 because we can write 7 = 1+6 = 2+5 = 3+4 = 4+3 = 5+2 = 6+1; a(8) = 3 because we can write 8 = 2+6 = 4+4 = 6+2.
MAPLE
A065423 := proc(n)
(3*n-4-(-1)^n*n)/4 ;
end proc:
seq(A065423(n), n=1..40) ; # R. J. Mathar, Jan 24 2022
MATHEMATICA
LinearRecurrence[{0, 2, 0, -1}, {0, 0, 2, 1}, 100] (* Harvey P. Dale, May 14 2014 *)
PROG
(PARI) a(n)=n-=2; if(n%2, n+1, n/2)
CROSSREFS
Cf. A026741, A097140 (first differences), A030451 (absolute first differences), A210530.
Sequence in context: A375480 A107130 A194747 * A239242 A340621 A008733
KEYWORD
nonn,easy
AUTHOR
Len Smiley, Nov 23 2001
STATUS
approved