Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Aug 30 2016 03:50:57
%S 0,1,0,1,1,1,2,1,4,2,6,3,9,5,12,9,17,14,22,22,29,33,38,48,50,68,65,95,
%T 86,128,113,172,149,226,197,295,260,379,342,485,449,613,587,773,762,
%U 967,987,1206,1269,1497,1623,1855,2063,2289,2610,2823,3280,3471
%N Number of partitions of n into distinct parts for which (number of odd parts) > (number of even parts).
%C a(n) = Sum_{k>=1} A240021(n,k). - _Alois P. Heinz_, Apr 02 2014
%H Alois P. Heinz, <a href="/A239242/b239242.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) + A239240(n) = A000009(n) for n >=1.
%e a(8) = 4 counts these partitions: 71, 53, 521, 431.
%p b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
%p `if`(n=0, `if`(t>0, 1, 0 ), b(n, i-1, t)+`if`(i>n, 0,
%p b(n-i, i-1, t+`if`(irem(i, 2)=1, 1, -1)))))
%p end:
%p a:= n-> b(n$2, 0):
%p seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 15 2014
%t z = 55; p[n_] := p[n] = IntegerPartitions[n]; d[u_] := d[u] = DeleteDuplicates[u]; g[u_] := g[u] = Length[u];
%t Table[g[Select[Select[p[n], d[#] == # &], Count[#, _?OddQ] < Count[#, _?EvenQ] &]], {n, 0, z}] (* A239239 *)
%t Table[g[Select[Select[p[n], d[#] == # &], Count[#, _?OddQ] <= Count[#, _?EvenQ] &]], {n, 0, z}] (* A239240 *)
%t Table[g[Select[Select[p[n], d[#] == # &], Count[#, _?OddQ] == Count[#, _?EvenQ] &]], {n, 0, z}] (* A239241 *)
%t Table[g[Select[Select[p[n], d[#] == # &], Count[#, _?OddQ] > Count[#, _?EvenQ] &]], {n, 0, z}] (* A239242 *)
%t Table[g[Select[Select[p[n], d[#] == # &], Count[#, _?OddQ] >= Count[#, _?EvenQ] &]], {n, 0, z}] (* A239243 *)
%t (* _Peter J. C. Moses_, Mar 10 2014 *)
%t b[n_, i_, t_] := b[n, i, t] = If[n>i*(i+1)/2, 0, If[n==0, If[t>0, 1, 0], b[n, i-1, t]+If[i>n, 0, b[n-i, i-1, t+If[Mod[i, 2]==1, 1, -1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Aug 30 2016, after _Alois P. Heinz_ *)
%Y Cf. A239239, A239240, A239241, A239243, A000009.
%K nonn,easy
%O 0,7
%A _Clark Kimberling_, Mar 13 2014