login
A238790
Number of palindromic partitions of n whose least part has multiplicity <= 4.
3
1, 2, 2, 4, 3, 6, 6, 10, 9, 14, 14, 22, 21, 32, 29, 45, 43, 62, 61, 87, 83, 118, 113, 159, 153, 214, 206, 283, 272, 368, 359, 485, 469, 627, 607, 808, 784, 1036, 1004, 1318, 1282, 1670, 1628, 2112, 2053, 2651, 2583, 3317, 3235, 4134, 4034, 5138, 5013, 6355
OFFSET
1,2
COMMENTS
Palindromic partitions are defined at A025065.
EXAMPLE
a(8) counts these 10 partitions (written as palindromes): 8, 161, 44, 242, 11411, 323, 1331, 2222, 12221, 112211.
MATHEMATICA
z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Min[#]] <= k) &]
Table[p[n, 2], {n, 1, 12}]
t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238788 *)
Table[p[n, 3], {n, 1, 12}]
t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238789 *)
Table[p[n, 4], {n, 1, 12}]
t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238790 *)
(* Peter J. C. Moses, Mar 03 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 05 2014
STATUS
approved