OFFSET
1,2
COMMENTS
Palindromic partitions are defined at A025065.
EXAMPLE
a(8) counts these 11 partitions (written as palindromes): 8, 161, 44, 242, 11411, 323, 1331, 2222, 12221, 112211, 1112111.
MATHEMATICA
z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Max[#]] <= k) &]
Table[p[n, 1], {n, 1, 12}]
t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238785 *)
Table[p[n, 3], {n, 1, 12}]
t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238786 *)
Table[p[n, 4], {n, 1, 12}]
t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238787 *)
(* Peter J. C. Moses, Mar 03 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 05 2014
STATUS
approved