login
A238788
Number of palindromic partitions of n whose least part has multiplicity <= 2.
3
1, 2, 1, 3, 3, 4, 4, 7, 6, 11, 9, 13, 15, 22, 18, 29, 28, 40, 38, 55, 52, 75, 70, 97, 96, 133, 123, 173, 167, 225, 215, 291, 282, 380, 361, 479, 468, 619, 590, 780, 757, 986, 952, 1239, 1202, 1555, 1500, 1931, 1882, 2409, 2328, 2975, 2898, 3676, 3568, 4517
OFFSET
1,2
COMMENTS
Palindromic partitions are defined at A025065.
EXAMPLE
a(8) counts these 7 partitions (written as palindromes): 8, 161, 44, 242, 323, 1331, 12221
MATHEMATICA
z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Min[#]] <= k) &]
Table[p[n, 2], {n, 1, 12}]
t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238788 *)
Table[p[n, 3], {n, 1, 12}]
t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238789 *)
Table[p[n, 4], {n, 1, 12}]
t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238790 *)
(* Peter J. C. Moses, Mar 03 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 05 2014
STATUS
approved