

A238715


Least prime of a run of 3 or more consecutive decadal prime triples.


4



11, 821, 1031, 1423, 5413, 13691, 140831, 220873, 266023, 283571, 464741, 1596311, 1660661, 1966813, 2655403, 3303341, 5191331, 5485393, 8125511, 14241911, 14848511, 15586993, 15852043, 16539163, 19608041, 19696841, 30624071, 31809073, 35493551, 38335541, 40430771
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Sequence A008470 lists "prime triple decades", i.e., numbers m>1 such that the interval (10m,10m+10) contains at least 3 primes. The decades must be of the form m=3k+1, since for m=3k, 10m+3 and 10m+9 cannot be prime and for m=3k+2, 10k+1 and 10k+7 cannot be prime. Thus, "consecutive" prime triples are meant here in the sense of consecutive kvalues.
Alternatively, the present sequence lists the terms A238713(n) for which A238713(n+2) <= A238713(n)+75, or equivalently, floor(A238713(n+2)/30) <= floor(A238713(n)/30)+2, but only if A238713(n1) < A238713(n)15, to keep only the first of a possibly longer run, cf. example.
See A238716 for the length of the runs of "consecutive" decades A008470 in this sense.


LINKS



EXAMPLE

The first occurrence of 5 consecutive triples is: {11, 13, 17 (or 19)} ; {41, 43, 47} ; {71, 73, 79} ; {101, 103, 107 (or 109)} ; {131, 137, 139}. This corresponds to decades 1,4,7,10,13; i.e., the first 5 terms of sequence A008470. The present sequence only lists a(1)=11, but not 41 or 71 which also start a run of 3 consecutive prime triple decades, but they are not listed because already part of the run starting at a(1).
The next occurrence of 4 consecutive triples starts with decade m=541, and the next occurrence of 5 consecutive triples starts with decade m=910052463685, at p = 9100524636851 (found by J. K. Andersen).


PROG

(PARI) {d=10; p=primepi(d); i=0; while( po=p, p=primepi( d+=10 ); p>2+po && i++ && (p=primepi(d+=20)) && next; i  next; i>=3 && print1(nextprime(d1030*i)", "); i=0; )} \\ this could be optimized ...
(PARI) isA238713(n)=my(t=n%10); if(t==1, isprime(n) && if(isprime(n+2), isprime(n+6)  isprime(n+8), isprime(n+6) && isprime(n+8)), t==3 && isprime(n) && !isprime(n2) && isprime(n+4) && isprime(n+6))
isA008470(n)=if(isprime(10*n+1), if(isprime(10*n+3), isprime(10*n+7)  isprime(10*n+9), isprime(10*n+7) && isprime(10*n+9)), isprime(10*n+3) && isprime(10*n+7) && isprime(10*n+9))
is(n)=isA238713(n) && isA008470(n\10+3) && isA008470(n\10+6) && !isA008470(n\103) \\ Charles R Greathouse IV, Mar 04 2014


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



