login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238450
Triangle read by rows: T(n,k) is the number of k’s in all partitions of n into an odd number of distinct parts.
9
1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 2, 1, 1, 1, 1, 0, 0, 1, 2, 2, 2, 1, 1, 1, 0, 0, 1, 3, 2, 2, 1, 2, 1, 1, 0, 0, 1, 3, 3, 2, 2, 1, 2, 1, 1, 0, 0, 1, 4, 3, 3, 3, 2, 2, 2, 1, 1, 0, 0, 1, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 0, 0, 1
OFFSET
1,29
LINKS
FORMULA
T(n,k) = Sum_{j=1..round(n/(2*k))} A067661(n-(2*j-1)*k) - Sum_{j=1..floor(n/(2*k))} A067659(n-2*j*k).
G.f. of column k: (1/2)*(q^k/(1+q^k))*(-q;q)_{inf} + (1/2)*(q^k/(1-q^k))*(q;q)_{inf}.
T(n,k) = A015716(n,k) - A238451(n,k). - Andrew Howroyd, Apr 29 2020
EXAMPLE
n\k | 1 2 3 4 5 6 7 8 9 10
1: 1
2: 0 1
3: 0 0 1
4: 0 0 0 1
5: 0 0 0 0 1
6: 1 1 1 0 0 1
7: 1 1 0 1 0 0 1
8: 2 1 1 1 1 0 0 1
9: 2 2 2 1 1 1 0 0 1
10: 3 2 2 1 2 1 1 0 0 1
PROG
(PARI) T(n, k) = {my(m=n-k); if(m>0, polcoef(prod(j=1, m, 1+x^j + O(x*x^m))/(1+x^k) + prod(j=1, m, 1-x^j + O(x*x^m))/(1-x^k), m)/2, m==0)} \\ Andrew Howroyd, Apr 29 2020
CROSSREFS
Columns k=1..6 are A238208, A238209, A238210, A238211, A238212, A238213.
Row sums are A238131.
Sequence in context: A229745 A339366 A016397 * A251926 A335504 A037908
KEYWORD
nonn,tabl
AUTHOR
Mircea Merca, Feb 26 2014
EXTENSIONS
Terms a(79) and beyond from Andrew Howroyd, Apr 29 2020
STATUS
approved