login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of k’s in all partitions of n into an odd number of distinct parts.
9

%I #16 Apr 29 2020 14:29:03

%S 1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,1,1,1,0,0,1,1,1,0,1,0,0,1,2,1,1,1,1,0,

%T 0,1,2,2,2,1,1,1,0,0,1,3,2,2,1,2,1,1,0,0,1,3,3,2,2,1,2,1,1,0,0,1,4,3,

%U 3,3,2,2,2,1,1,0,0,1,4,4,3,3,2,2,2,2,1,1,0,0,1

%N Triangle read by rows: T(n,k) is the number of k’s in all partitions of n into an odd number of distinct parts.

%H Andrew Howroyd, <a href="/A238450/b238450.txt">Table of n, a(n) for n = 1..1275</a>

%F T(n,k) = Sum_{j=1..round(n/(2*k))} A067661(n-(2*j-1)*k) - Sum_{j=1..floor(n/(2*k))} A067659(n-2*j*k).

%F G.f. of column k: (1/2)*(q^k/(1+q^k))*(-q;q)_{inf} + (1/2)*(q^k/(1-q^k))*(q;q)_{inf}.

%F T(n,k) = A015716(n,k) - A238451(n,k). - _Andrew Howroyd_, Apr 29 2020

%e n\k | 1 2 3 4 5 6 7 8 9 10

%e 1: 1

%e 2: 0 1

%e 3: 0 0 1

%e 4: 0 0 0 1

%e 5: 0 0 0 0 1

%e 6: 1 1 1 0 0 1

%e 7: 1 1 0 1 0 0 1

%e 8: 2 1 1 1 1 0 0 1

%e 9: 2 2 2 1 1 1 0 0 1

%e 10: 3 2 2 1 2 1 1 0 0 1

%o (PARI) T(n,k) = {my(m=n-k); if(m>0, polcoef(prod(j=1, m, 1+x^j + O(x*x^m))/(1+x^k) + prod(j=1, m, 1-x^j + O(x*x^m))/(1-x^k), m)/2, m==0)} \\ _Andrew Howroyd_, Apr 29 2020

%Y Columns k=1..6 are A238208, A238209, A238210, A238211, A238212, A238213.

%Y Row sums are A238131.

%Y Cf. A015716, A067659, A067661, A238451.

%K nonn,tabl

%O 1,29

%A _Mircea Merca_, Feb 26 2014

%E Terms a(79) and beyond from _Andrew Howroyd_, Apr 29 2020