login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251926
The Faulhaber-Knuth a(0,n) sequence.
0
2, 1, 1, 1, 1, 0, 0, 1, 37, -60, -5, 37, 174, -955, -10545, 38610, 176297, -322740, -205420, 4512655, 56820585, -104019264, -25907081, 94854194, 1141847218, -2090335775, -414239903275, 6066664425833, 85621405759989, -156743813184120, -4337631088920, 47644406040193, 1265208493396175131, -2316168508680582540, -192288633159406495
OFFSET
4,1
COMMENTS
a(n) is equal to the remainder when dividing the polynomial T_n(x) by x^2 + x - 1. T_n(x) (in Z[x]) is the positive integer multiplicity of the modified Faulhaber polynomial T*_n(x), coefficients of which have GCD equal to 1. We have T*_n(x) = S(n;x)/x^2(x+1)^2 if n is odd, and T*_n(x) = S(n;x)/x(x+1)(2x+1) if n is even, n >= 4, where S(n;x) denotes the n-th Faulhaber polynomial, i.e., S(n;x) = 1/(n+1) sum{taken over i=0,1,...,n} Bin(n+1,i)Bern(i)x^(n+1-i), and Bern(i) denotes the i-th Bernoulli number with Bern(1)=1/2.
We note that every T_n(x) is a polynomial in the variable (x^2 + x - 1), for example T_7(x) = 3(x^2 + x - 1)^2 + 2(x^2 + x - 1) + 1. Furthermore, every T_n(x) is a polynomial in (x^2 + x + a) for each complex a. But only for a = -1 is the element a(n) also equal to the remainder when dividing S(n;x) by x^2 + x + a if n is odd and S(n;x)/(2x+1) by x^2 + x + a if n is even.
LINKS
D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comput. 203 (1993), 277-294.
Piotr Lorenc, Jakub Jan Ludew, Mariusz Pleszczyński, Alicja Samulewicz, Roman Wituła, Iterated integrals of Faulhaber polynomials and some properties of their roots, 2018.
P. Lorenc, M. Pleszczyński, R. Witula, Iterated integrals of polynomials, Applied Mathematics and Computation, Volume 249, 15 December 2014, Pages 389-398.
EXAMPLE
We have: T_4(x) = 3x^2 + 3x - 1, T_4(x) - T_5(x) = x^2 + x, T_6(x) - T_7(x) = x^2 + x - 1, T_9(x) = (x^2 + x - 1)(2x^4 + 4x^3 - x^2 - 3x + 3) and T_15(x) - T_12(x) is divisible by (x^2 + x - 1), which implies a(0)=2, a(1)=1, a(2)=a(3), a(5)=0 and a(8)=a(11).
MATHEMATICA
coeffFaulh[n_] := Module[{t, tab = {}, s, p, x},
If[n < 4, Return["Give n greater than 3."]];
t = Table[1, {n + 2}];
Do[t[[i + 1]] = BernoulliB[i], {i, 1, n + 1}];
t[[2]] = 1/2;
s[m_, x_] := (Sum[Binomial[m + 1, i]t[[ i + 1]] x^(m + 1 - i), {i, 0, m}])/(m + 1);
Do[If[Mod[i, 2] == 0,
p = PolynomialRemainder[FactorList[Factor[s[i, x]] (i + 1)/(x (x + 1) (2 x + 1))][[2, 1]], -1 + x + x^2, x],
p = PolynomialRemainder[FactorList[Factor[s[i, x]] (i + 1)/(x^2 (x + 1)^2)][[2, 1]], -1 + x + x^2, x]];
tab = Append[tab, p], {i, 4, n}];
tab]
CROSSREFS
Sequence in context: A339366 A016397 A238450 * A335504 A037908 A116663
KEYWORD
sign
AUTHOR
Roman Witula, Dec 11 2014
STATUS
approved