OFFSET
1,2
COMMENTS
Also nonnegative integers x in the solutions to 2*x^2-4*y^2+4*x+2*y+2 = 0, the corresponding values of y being A008844.
First bisection of A076708. [Bruno Berselli, Dec 11 2014]
LINKS
Colin Barker, Table of n, a(n) for n = 1..653
Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
FORMULA
a(n) = 35*a(n-1)-35*a(n-2)+a(n-3).
G.f.: 2*x^2*(x-17) / ((x-1)*(x^2-34*x+1)).
a(n) = (-8-(4+3*sqrt(2))*(17+12*sqrt(2))^(-n)+(-4+3*sqrt(2))*(17+12*sqrt(2))^n)/8. - Colin Barker, Mar 02 2016
EXAMPLE
34 is in the sequence because T(34)+T(35) = 595+630 = 1225 = H(25).
MATHEMATICA
LinearRecurrence[{35, -35, 1}, {0, 34, 1188}, 20] (* Harvey P. Dale, Feb 04 2019 *)
PROG
(PARI) concat(0, Vec(2*x^2*(x-17)/((x-1)*(x^2-34*x+1)) + O(x^100)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 11 2014
STATUS
approved