login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237445
Primes p such that f(f(p)) is prime, where f(x) = x^4 + x^3 + x^2 + x + 1 = A053699(x).
0
1451, 2351, 2381, 2791, 5531, 5981, 7841, 8821, 10091, 10501, 11411, 11701, 12011, 13241, 15271, 15331, 16691, 17231, 18341, 18671, 19891, 20981, 21911, 23071, 23131, 23561, 23741, 24061, 25321, 27361, 29221, 30851, 30941, 31271, 32141, 33931
OFFSET
1,1
COMMENTS
All numbers are congruent to 1 mod 10.
EXAMPLE
1451 is prime and f(f(1451)) = 387147304469214558406348338836395337085545589397781 is prime. Thus, 1451 is a member of this sequence.
PROG
(Python)
import sympy
from sympy import isprime
{print(n) for n in range(10**5) if isprime(n) and isprime((n**4+n**3+n**2+n+1)**4+(n**4+n**3+n**2+n+1)**3+(n**4+n**3+n**2+n+1)**2+(n**4+n**3+n**2+n+1)+1)}
(PARI) f(x)=x^4+x^3+x^2+x+1; forprime(p=1, 35000, ispseudoprime(f(f(p)))&&print1(p", ")) \\ M. F. Hasler, Feb 09 2014
CROSSREFS
Sequence in context: A242038 A045099 A325883 * A122421 A187992 A151722
KEYWORD
nonn
AUTHOR
Derek Orr, Feb 08 2014
STATUS
approved