OFFSET
1,1
COMMENTS
Phi_5(x) = x^4 + x^3 + x^2 + x + 1 is the fifth cyclotomic polynomial, see A053699.
All numbers are congruent to 5 mod 100.
The definition requires p to be prime, Phi_5(p) does not need to be prime, but Phi_5(Phi_5(p)) must be prime.
EXAMPLE
4435770414505 = 1451^4+1451^3+1451^2+1451+1 (1451 is prime), and 4435770414505^4+4435770414505^3+4435770414505^2+4435770414505+1 = 387147304469214558406348338836395337085545589397781 is prime. Thus, 4435770414505 is a member of this sequence.
PROG
(Python)
import sympy
from sympy import isprime
{print(n**4+n**3+n**2+n+1) for n in range(10**5) if isprime(n) and isprime((n**4+n**3+n**2+n+1)**4+(n**4+n**3+n**2+n+1)**3+(n**4+n**3+n**2+n+1)**2+(n**4+n**3+n**2+n+1)+1)}
(PARI) forprime(p=2, 1e7, k=polcyclo(5, p) ; if( ispseudoprime(polcyclo(5, k)), print1(k", "))) \\ Charles R Greathouse IV, Feb 07 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Derek Orr, Feb 06 2014
STATUS
approved