login
A237446
Primes p such that f(f(p)) is prime where f(x) = Phi_6(x).
0
29, 197, 673, 2297, 3613, 5923, 6133, 6917, 8219, 13553, 15667, 17137, 21911, 30941, 33587, 35407, 38053, 44017, 45557, 46663, 51241, 53453, 65731, 67187, 82349, 94151, 115361, 132287, 143711, 164011, 164291, 165523, 178613, 180797, 182141
OFFSET
1,1
COMMENTS
Phi_k(x) is the k-th cyclotomic polynomial, see A013595 or A013596.
EXAMPLE
29 is prime and f(29^6+29^5+29^4+29^3+29^2+29+1) = 54672347801779330810964871392077416495507203132755717 is prime. Thus, 29 is a member of this sequence.
PROG
(Python)
import sympy
from sympy import isprime
{print(n) for n in range(10**6) if isprime(n) and isprime((n**6+n**5+n**4+n**3+n**2+n+1)**6+(n**6+n**5+n**4+n**3+n**2+n+1)**5+(n**6+n**5+n**4+n**3+n**2+n+1)**4+(n**6+n**5+n**4+n**3+n**2+n+1)**3+(n**6+n**5+n**4+n**3+n**2+n+1)**2+(n**6+n**5+n**4+n**3+n**2+n+1)+1)}
CROSSREFS
Sequence in context: A142226 A323576 A142653 * A144731 A200471 A027724
KEYWORD
nonn
AUTHOR
Derek Orr, Feb 08 2014
STATUS
approved