login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236325
a(n) = |{0 < k < n: m = phi(k)/2 + phi(n-k)/12 is an integer with m! + prime(m) prime}|, where phi(.) is Euler's totient function.
1
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 2, 1, 2, 3, 4, 3, 4, 4, 5, 2, 4, 3, 4, 5, 5, 6, 5, 6, 8, 7, 9, 8, 6, 6, 5, 8, 9, 4, 8, 7, 7, 5, 5, 7, 7, 8, 8, 6, 7, 8, 7, 10, 5, 8, 9, 8, 7, 7, 6, 7, 8, 12, 10, 6, 8, 9, 9, 12, 9, 8, 7, 13
OFFSET
1,16
COMMENTS
It might seem that a(n) > 0 for all n > 14, but a(7365) = 0. If a(n) > 0 infinitely often, then there are infinitely many positive integers m with m! + prime(m) prime.
EXAMPLE
a(10) = 1 since phi(1)/2 + phi(9)/12 = 1/2 + 6/12 = 1 with 1! + prime(1) = 1 + 2 = 3 prime.
a(23) = 1 since phi(10)/2 + phi(13)/12 = 2 + 1 = 3 with 3! + prime(3) = 6 + 5 = 11 prime.
MATHEMATICA
p[n_]:=IntegerQ[n]&&PrimeQ[n!+Prime[n]]
f[n_, k_]:=EulerPhi[k]/2+EulerPhi[n-k]/12
a[n_]:=Sum[If[p[f[n, k]], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 22 2014
STATUS
approved