

A235915


a(1) = 1, a(n) = a(n1) + (digsum(a(n1)) mod 5) + 1, digsum = A007953.


0



1, 3, 7, 10, 12, 16, 19, 20, 23, 24, 26, 30, 34, 37, 38, 40, 45, 50, 51, 53, 57, 60, 62, 66, 69, 70, 73, 74, 76, 80, 84, 87, 88, 90, 95, 100, 102, 106, 109, 110, 113, 114, 116, 120, 124, 127, 128, 130, 135, 140, 141
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..51.
Ben Paul Thurston, Low Kolmorogov complexity but never repeating series?


EXAMPLE

For n = 7, a(6) is 16, where the sum of the digits is 7, of which the remainder when divided by 5 is 2, then plus 1 is 3. Thus a(7) is a(6) + 3 or 19.


MAPLE

a:= proc(n) a(n):= `if`(n=1, 1, a(n1) +1 +irem(
add(i, i=convert(a(n1), base, 10)), 5)) end:
seq(a(n), n=1..100); # Alois P. Heinz, Feb 15 2014


PROG

(Python)def adddigits(i):..s = str(i)...t=0...for j in s:......t = t+int(j)...return t.n = 1.a = [].for i in range(0, 100):...r = adddigits(n)%5+1...n = n+r...a.append(n).print(a)
(PARI) digsum(n)=d=eval(Vec(Str(n))); sum(i=1, #d, d[i])
a=vector(1000); a[1]=1; for(n=2, #a, a[n]=a[n1]+digsum(a[n1])%5+1); a \\ Colin Barker, Feb 14 2014


CROSSREFS

Cf. A007953.
Sequence in context: A147683 A319279 A013574 * A310178 A310179 A310180
Adjacent sequences: A235912 A235913 A235914 * A235916 A235917 A235918


KEYWORD

nonn,base


AUTHOR

Ben Paul Thurston, Jan 16 2014


STATUS

approved



