The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A235915 a(1) = 1, a(n) = a(n-1) + (digsum(a(n-1)) mod 5) + 1, digsum = A007953. 0
 1, 3, 7, 10, 12, 16, 19, 20, 23, 24, 26, 30, 34, 37, 38, 40, 45, 50, 51, 53, 57, 60, 62, 66, 69, 70, 73, 74, 76, 80, 84, 87, 88, 90, 95, 100, 102, 106, 109, 110, 113, 114, 116, 120, 124, 127, 128, 130, 135, 140, 141 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..51. Ben Paul Thurston, Low Kolmorogov complexity but never repeating series? EXAMPLE For n = 7, a(6) is 16, where the sum of the digits is 7, of which the remainder when divided by 5 is 2, then plus 1 is 3. Thus a(7) is a(6) + 3 or 19. MAPLE a:= proc(n) a(n):= `if`(n=1, 1, a(n-1) +1 +irem( add(i, i=convert(a(n-1), base, 10)), 5)) end: seq(a(n), n=1..100); # Alois P. Heinz, Feb 15 2014 PROG (Python) def adddigits(i): s = str(i) t=0 for j in s: t = t+int(j) return t n = 1 a = [1] for i in range(0, 100): r = adddigits(n)%5+1 n = n+r a.append(n) print(a) (PARI) digsum(n)=d=eval(Vec(Str(n))); sum(i=1, #d, d[i]) a=vector(1000); a[1]=1; for(n=2, #a, a[n]=a[n-1]+digsum(a[n-1])%5+1); a \\ Colin Barker, Feb 14 2014 CROSSREFS Cf. A007953. Sequence in context: A147683 A319279 A013574 * A310178 A310179 A310180 Adjacent sequences: A235912 A235913 A235914 * A235916 A235917 A235918 KEYWORD nonn,base AUTHOR Ben Paul Thurston, Jan 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 8 11:34 EDT 2023. Contains 363164 sequences. (Running on oeis4.)