The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A235912 a(n) = |{0 < k < n - 2: 2*m + 1, m*(m-1) - prime(m) and m*(m+1) - prime(m) are all prime with m = phi(k) + phi(n-k)/2}|, where phi(.) is Euler's totient function. 3
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 2, 4, 2, 6, 5, 6, 7, 4, 8, 7, 8, 8, 11, 7, 12, 9, 9, 12, 5, 14, 10, 9, 9, 9, 9, 7, 8, 11, 9, 8, 7, 14, 8, 6, 9, 5, 5, 9, 11, 3, 9, 6, 13, 8, 8, 6, 7, 6, 5, 4, 3, 1, 5, 5, 5, 6, 5, 7, 7, 4, 7, 11, 8, 3, 5, 3, 10, 4, 4, 3, 9, 2, 4, 4, 5, 8, 12, 13, 4, 9, 5, 11, 5, 12, 7, 4, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,12 COMMENTS Conjecture: a(n) > 0 for all n > 11. This implies that there are infinitely many odd primes p = 2*m + 1 with q = m*(m-1) - prime(m) and r = m*(m+1) - prime(m) both prime. Note that r - q = 2*m. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..10000 EXAMPLE a(10) = 1 since phi(5) + phi(5)/2 = 6 with 2*6 + 1 = 13, 5*6 - prime(6) = 30 - 13 = 17 and 6*7 - prime(6) = 42 - 13 = 29 all prime. MATHEMATICA PQ[n_]:=n>0&&PrimeQ[n] p[n_]:=PrimeQ[2n+1]&&PQ[n(n-1)-Prime[n]]&&PQ[n(n+1)-Prime[n]] f[n_, k_]:=EulerPhi[k]+EulerPhi[n-k]/2 a[n_]:=Sum[If[p[f[n, k]], 1, 0], {k, 1, n-3}] Table[a[n], {n, 1, 100}] CROSSREFS Cf. A000010, A000040, A235592, A235728. Sequence in context: A322587 A058973 A155520 * A339749 A277859 A308566 Adjacent sequences:  A235909 A235910 A235911 * A235913 A235914 A235915 KEYWORD nonn AUTHOR Zhi-Wei Sun, Jan 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 12:24 EST 2021. Contains 349557 sequences. (Running on oeis4.)