login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235913
a(n) is the Manhattan distance between n^3 and (n+1)^3 in a square spiral of positive integers with 1 at the center.
0
1, 3, 11, 15, 13, 9, 5, 21, 33, 59, 71, 49, 47, 35, 15, 13, 43, 73, 109, 123, 117, 109, 167, 141, 113, 77, 43, 5, 51, 95, 145, 201, 263, 281, 397, 413, 317, 333, 269, 239, 183, 121, 63, 11, 81, 147, 219, 307, 379, 471, 567, 623, 517, 569, 683, 503, 545, 473, 395, 311
OFFSET
1,2
COMMENTS
Spiral begins:
.
49 26--27--28--29--30--31
| | |
48 25 10--11--12--13 32
| | | | |
47 24 9 2---3 14 33
| | | | | | |
46 23 8 1 4 15 34
| | | | | |
45 22 7---6---5 16 35
| | | |
44 21--20--19--18--17 36
| |
43--42--41--40--39--38--37
EXAMPLE
Manhattan distance between 2^3=8 and 3^3=27 is 3 in a square spiral, so a(2)=3.
PROG
(Python)
import math
def get_x_y(n):
sr = int(math.sqrt(n-1)) # Ok for small n's
sr = sr-1+(sr&1)
rm = n-sr*sr
d = (sr+1)/2
if rm<=sr+1:
return -d+rm, d
if rm<=sr*2+2:
return d, d-(rm-(sr+1))
if rm<=sr*3+3:
return d-(rm-(sr*2+2)), -d
return -d, -d+rm-(sr*3+3)
for n in range(1, 77):
x0, y0 = get_x_y(n**3)
x1, y1 = get_x_y((n+1)**3)
print str(abs(x1-x0)+abs(y1-y0))+', ',
CROSSREFS
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Jan 16 2014
STATUS
approved