Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Nov 23 2023 17:41:34
%S 1,3,7,10,12,16,19,20,23,24,26,30,34,37,38,40,45,50,51,53,57,60,62,66,
%T 69,70,73,74,76,80,84,87,88,90,95,100,102,106,109,110,113,114,116,120,
%U 124,127,128,130,135,140,141
%N a(1) = 1, a(n) = a(n-1) + (digsum(a(n-1)) mod 5) + 1, digsum = A007953.
%H Harvey P. Dale, <a href="/A235915/b235915.txt">Table of n, a(n) for n = 1..1000</a>
%H Ben Paul Thurston, <a href="http://benpaulthurstonblog.blogspot.com/2014/01/low-kolmorogov-complexity-but-never.html">Low Kolmorogov complexity but never repeating series?</a>
%e For n = 7, a(6) is 16, where the sum of the digits is 7, of which the remainder when divided by 5 is 2, then plus 1 is 3. Thus a(7) is a(6) + 3 or 19.
%p a:= proc(n) a(n):= `if`(n=1, 1, a(n-1) +1 +irem(
%p add(i, i=convert(a(n-1), base, 10)), 5)) end:
%p seq(a(n), n=1..100); # _Alois P. Heinz_, Feb 15 2014
%t NestList[#+Mod[Total[IntegerDigits[#]],5]+1&,1,50] (* _Harvey P. Dale_, Nov 23 2023 *)
%o (Python)
%o def adddigits(i):
%o s = str(i)
%o t=0
%o for j in s:
%o t = t+int(j)
%o return t
%o n = 1
%o a = [1]
%o for i in range(0, 100):
%o r = adddigits(n)%5+1
%o n = n+r
%o a.append(n)
%o print(a)
%o (PARI) digsum(n)=d=eval(Vec(Str(n))); sum(i=1, #d, d[i])
%o a=vector(1000); a[1]=1; for(n=2, #a, a[n]=a[n-1]+digsum(a[n-1])%5+1); a \\ _Colin Barker_, Feb 14 2014
%Y Cf. A007953.
%K nonn,base
%O 1,2
%A _Ben Paul Thurston_, Jan 16 2014