login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235343
a(n) = |{0 < k < n: f(n,k) - 1, f(n,k) + 1 and q(f(n,k)) + 1 are all prime with f(n,k) = phi(k) + phi(n-k)/4}|, where phi(.) is Euler's totient function, and q(.) is the strict partition function (A000009).
6
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 3, 3, 2, 4, 2, 2, 3, 4, 4, 2, 3, 0, 3, 2, 3, 3, 3, 3, 4, 0, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 4, 0, 2, 1, 5, 2, 2, 0, 2, 3, 2, 3, 4, 4, 2, 2, 2, 1, 3, 6, 3, 3, 1, 5, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2
OFFSET
1,19
COMMENTS
Conjecture: (i) a(n) > 0 for all n >= 60.
(ii) For any integer n > 1234, there is a positive integer k < n such that g(n,k) - 1, g(n,k) + 1 and q(g(n,k)) - 1 are all prime, where g(n,k) = phi(k) + phi(n-k)/8.
Clearly, part (i) implies that there are infinitely many primes of the form q(m) + 1 with m - 1 and m + 1 also prime, and part (ii) implies that there are infinitely many primes of the form q(m) - 1 with m - 1 and m + 1 also prime. As log q(m) is asymptotically equivalent to pi*sqrt(m/3), the conjecture is much stronger than the twin prime conjecture.
We have verified parts (i) and (ii) for n up to 100000 and 60000 respectively.
LINKS
EXAMPLE
a(50) = 1 since phi(34) + phi(16)/4 = 18 with 18 - 1, 18 + 1 and q(18) + 1 = 47 all prime.
a(215) = 1 since phi(87) + phi(128)/4 = 72 with 72 - 1, 72 + 1 and q(72) + 1 = 36353 all prime.
a(645) = 1 since phi(365) + phi(280)/4 = 312 with 312 - 1, 312 + 1 and q(312) + 1 = 207839472391 all prime.
MATHEMATICA
f[n_, k_]:=EulerPhi[k]+EulerPhi[n-k]/4
p[n_, k_]:=PrimeQ[f[n, k]-1]&&PrimeQ[f[n, k]+1]&&PrimeQ[PartitionsQ[f[n, k]]+1]
a[n_]:=Sum[If[p[n, k], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 06 2014
STATUS
approved