|
|
A235014
|
|
Number of (n+1) X (5+1) 0..4 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 3, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
|
|
1
|
|
|
1736, 2568, 4008, 6856, 12168, 23016, 44680, 90824, 189032, 407880, 900168, 2043496, 4730184, 11179080, 26815912, 65246024, 160397576, 397950312, 993981960, 2496937288, 6298923240, 15945371592, 40469357512, 102926663144
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 5*a(n-1) + a(n-2) - 38*a(n-3) + 33*a(n-4) + 97*a(n-5) - 127*a(n-6) - 88*a(n-7) + 154*a(n-8) + 12*a(n-9) - 48*a(n-10).
Empirical g.f.: 8*x*(217 - 764*x - 1321*x^2 + 6277*x^3 + 1772*x^4 - 18189*x^5 + 2134*x^6 + 21334*x^7 - 4260*x^8 - 7872*x^9) / ((1 - x)*(1 - 2*x)*(1 - x - x^2)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - x - 4*x^2)). - Colin Barker, Oct 17 2018
|
|
EXAMPLE
|
Some solutions for n=4:
2 0 2 1 2 0 1 0 2 4 3 2 0 2 1 2 0 4 4 3 2 4 2 3
1 2 1 3 1 2 2 4 3 2 4 0 1 0 2 0 1 2 0 2 4 3 4 2
3 1 3 2 3 1 1 0 2 4 3 2 2 4 3 4 2 0 2 1 0 2 0 1
1 2 1 3 1 2 2 4 3 2 4 0 1 0 2 0 1 2 4 0 2 1 2 0
2 0 2 1 2 0 1 0 2 4 3 2 0 2 1 2 0 4 2 1 0 2 0 1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|