login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A235016 Number of (n+1) X (7+1) 0..4 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 3, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings). 1
11400, 14600, 19560, 28968, 44680, 74888, 128776, 235240, 437928, 853928, 1698888, 3513672, 7432648, 16248488, 36317416, 83329384, 194803464, 464181896, 1121480328, 2744583528, 6780016936, 16886392616, 42310371784, 106547257288 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..209

FORMULA

Empirical: a(n) = 5*a(n-1) + a(n-2) - 38*a(n-3) + 33*a(n-4) + 97*a(n-5) - 127*a(n-6) - 88*a(n-7) + 154*a(n-8) + 12*a(n-9) - 48*a(n-10).

Empirical g.f.: 8*x*(1425 - 5300*x - 8105*x^2 + 43721*x^3 + 7360*x^4 - 127725*x^5 + 24570*x^6 + 152306*x^7 - 36540*x^8 - 58464*x^9) / ((1 - x)*(1 - 2*x)*(1 - x - x^2)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - x - 4*x^2)). - Colin Barker, Oct 17 2018

EXAMPLE

Some solutions for n=4:

  4 0 2 0 1 2 1 0      3 2 3 2 3 2 0 2      0 4 2 4 0 4 2 3

  3 2 1 2 0 4 0 2      1 3 1 3 1 3 4 3      2 3 4 3 2 3 4 2

  4 0 2 0 1 2 1 0      3 2 3 2 3 2 0 2      4 2 0 2 4 2 0 1

  3 2 1 2 0 4 0 2      1 3 1 3 1 3 4 3      2 3 4 3 2 3 4 2

  4 0 2 0 1 2 1 0      3 2 3 2 3 2 0 2      4 2 0 2 4 2 0 1

CROSSREFS

Column 7 of A235017.

Sequence in context: A237796 A236983 A268841 * A185768 A082440 A083975

Adjacent sequences:  A235013 A235014 A235015 * A235017 A235018 A235019

KEYWORD

nonn,changed

AUTHOR

R. H. Hardin, Jan 02 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 20:32 EDT 2022. Contains 354830 sequences. (Running on oeis4.)