login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235012
Number of (n+1) X (3+1) 0..4 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 3, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
1
264, 488, 936, 1912, 4008, 8760, 19560, 44952, 105128, 250744, 605928, 1483288, 3663912, 9124728, 22858344, 57552408, 145440680, 368673400, 936669672, 2384161816, 6076987176, 15506905464, 39603020136, 101209873944, 258785240744
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) + 4*a(n-2) - 30*a(n-3) + 7*a(n-4) + 74*a(n-5) - 46*a(n-6) - 60*a(n-7) + 48*a(n-8).
Empirical g.f.: 8*x*(33 - 71*x - 259*x^2 + 517*x^3 + 676*x^4 - 1224*x^5 - 584*x^6 + 944*x^7) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - x - 4*x^2)). - Colin Barker, Oct 16 2018
EXAMPLE
Some solutions for n=4:
4 2 0 1 3 2 1 2 0 1 0 2 2 3 4 3 0 4 0 4
0 1 2 0 2 4 0 4 4 2 4 3 0 4 2 4 1 2 1 2
4 2 0 1 4 3 2 3 0 1 0 2 1 2 3 2 2 0 2 0
0 1 2 0 2 4 0 4 4 2 4 3 2 0 4 0 1 2 1 2
4 2 0 1 3 2 1 2 2 3 2 4 0 1 2 1 2 0 2 0
CROSSREFS
Column 3 of A235017.
Sequence in context: A050240 A105683 A160971 * A211713 A185764 A253916
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 02 2014
STATUS
approved