login
A235011
Number of (n+1) X (2+1) 0..4 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 3, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
1
104, 224, 488, 1112, 2568, 6088, 14600, 35560, 87368, 216680, 540680, 1356968, 3419592, 8648296, 21929864, 55731496, 141870920, 361640936, 922818824, 2356779176, 6022859976, 15399604072, 39390323336, 100787331112, 257945856584
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) + 4*a(n-2) - 14*a(n-3) - 4*a(n-4) + 16*a(n-5).
Empirical g.f.: 8*x*(13 - 11*x - 75*x^2 + 26*x^3 + 104*x^4) / ((1 - 2*x)*(1 - 2*x^2)*(1 - x - 4*x^2)). - Colin Barker, Oct 16 2018
EXAMPLE
Some solutions for n=4:
0 2 4 0 4 0 2 4 2 2 0 2 1 2 1 2 4 0 4 0 4
4 3 2 1 2 1 4 3 4 1 2 1 3 1 3 3 2 1 2 1 2
0 2 4 0 4 0 0 2 0 2 0 2 2 3 2 4 0 2 4 0 4
2 1 0 1 2 1 1 0 1 1 2 1 4 2 4 3 2 1 3 2 3
4 0 2 2 0 2 2 4 2 3 1 3 3 4 3 4 0 2 1 3 1
CROSSREFS
Column 2 of A235017.
Sequence in context: A108665 A258549 A121962 * A271745 A046298 A298325
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 02 2014
STATUS
approved