login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234959 Highest power of 6 dividing n. 10
1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

The generalized binomial coefficients produced by this sequence provide an analog to Kummer's Theorem using arithmetic in base 6.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.

FORMULA

a(n) = 6^(valuation(n,6)).

a(n) = 6^A122841(n). - Joerg Arndt, Jan 02 2014

G.f.: x/(1 - x) + 5 * Sum_{k>=1} 6^(k-1)*x^(6^k)/(1 - x^(6^k)). - Ilya Gutkovskiy, Jul 10 2019

EXAMPLE

Since 12 = 6 * 2, a(12) = 6. Likewise, since 6 does not divide 13, a(13) = 1.

MATHEMATICA

6^Table[IntegerExponent[n, 6], {n, 84}] (* Alonso del Arte, Jan 01 2014 *)

PROG

(Sage)

n=200 #change n for more terms

[6^(valuation(i, 6)) for i in [1..n]]

(Haskell)

a234959 = f 1 where

   f y x = if m == 0 then f (y * 6) x' else y  where (x', m) = divMod x 6

-- Reinhard Zumkeller, Feb 09 2015

(PARI) a(n)=6^valuation(n, 6) \\ Charles R Greathouse IV, Aug 05 2015

CROSSREFS

Cf. A006519, A038500, A122841, A234957, A243758.

Sequence in context: A267426 A202917 A324396 * A325471 A167155 A268731

Adjacent sequences:  A234956 A234957 A234958 * A234960 A234961 A234962

KEYWORD

nonn,easy

AUTHOR

Tom Edgar, Jan 01 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 4 08:38 EST 2021. Contains 341781 sequences. (Running on oeis4.)