login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234848
Triangular numbers with digits in nondecreasing order.
2
0, 1, 3, 6, 15, 28, 36, 45, 55, 66, 78, 136, 378, 666, 1128, 1225, 1378, 2278, 2346, 2556, 5778, 12246, 13366, 22366, 22578, 35778, 111156, 222778, 223446, 333336, 1113778, 1222266, 1457778, 2235555, 3557778, 22227778, 22234446, 111116778, 156777778, 222446778
OFFSET
1,3
COMMENTS
Beyond 222446778, all terms are k(k+1)/2 for k = 2s7, 6s7, or 6s8, where s stands for any number of 6's. - T. D. Noe, Jan 01 2014
LINKS
T. D. Noe, Table of n, a(n) for n = 1..328 (terms less than 10^200)
MATHEMATICA
inOrder[nums_] := Min[Differences[nums]] >= 0; t = {}; Do[tri = n*(n+1)/2; If[inOrder[IntegerDigits[tri]], AppendTo[t, tri]], {n, 0, 10^5}]; t (* T. D. Noe, Dec 31 2013 *)
Select[Accumulate[Range[0, 22000]], Min[Differences[IntegerDigits[#]]]>=0&] (* Harvey P. Dale, Apr 06 2023 *)
PROG
(Python)
from itertools import chain, count, islice, combinations_with_replacement
from sympy import integer_nthroot
def A234848_gen(): # generator of terms
return chain((0, ), (n for n in (int(''.join(i)) for l in count(1) for i in combinations_with_replacement('123456789', l)) if integer_nthroot(8*n+1, 2)[1]))
A234848_list = list(islice(A234848_gen(), 50)) # Chai Wah Wu, May 22 2022
CROSSREFS
Sequence in context: A000740 A056278 A161625 * A300761 A069712 A076971
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Dec 31 2013
STATUS
approved