login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular numbers with digits in nondecreasing order.
2

%I #19 Apr 06 2023 10:19:25

%S 0,1,3,6,15,28,36,45,55,66,78,136,378,666,1128,1225,1378,2278,2346,

%T 2556,5778,12246,13366,22366,22578,35778,111156,222778,223446,333336,

%U 1113778,1222266,1457778,2235555,3557778,22227778,22234446,111116778,156777778,222446778

%N Triangular numbers with digits in nondecreasing order.

%C Beyond 222446778, all terms are k(k+1)/2 for k = 2s7, 6s7, or 6s8, where s stands for any number of 6's. - _T. D. Noe_, Jan 01 2014

%H T. D. Noe, <a href="/A234848/b234848.txt">Table of n, a(n) for n = 1..328</a> (terms less than 10^200)

%t inOrder[nums_] := Min[Differences[nums]] >= 0; t = {}; Do[tri = n*(n+1)/2; If[inOrder[IntegerDigits[tri]], AppendTo[t, tri]], {n, 0, 10^5}]; t (* _T. D. Noe_, Dec 31 2013 *)

%t Select[Accumulate[Range[0,22000]],Min[Differences[IntegerDigits[#]]]>=0&] (* _Harvey P. Dale_, Apr 06 2023 *)

%o (Python)

%o from itertools import chain, count, islice, combinations_with_replacement

%o from sympy import integer_nthroot

%o def A234848_gen(): # generator of terms

%o return chain((0,), (n for n in (int(''.join(i)) for l in count(1) for i in combinations_with_replacement('123456789',l)) if integer_nthroot(8*n+1,2)[1]))

%o A234848_list = list(islice(A234848_gen(),50)) # _Chai Wah Wu_, May 22 2022

%Y Cf. A000217, A028820.

%K base,nonn

%O 1,3

%A _Zak Seidov_, Dec 31 2013