login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234307
a(n) = Sum_{i=1..n} gcd(2*n-i, i).
3
1, 3, 6, 8, 11, 17, 16, 20, 27, 31, 26, 44, 31, 45, 60, 48, 41, 75, 46, 80, 87, 73, 56, 108, 85, 87, 108, 116, 71, 165, 76, 112, 141, 115, 158, 192, 91, 129, 168, 196, 101, 239, 106, 188, 261, 157, 116, 256, 175, 235, 222, 224, 131, 297, 256, 284, 249, 199
OFFSET
1,2
COMMENTS
Sum of the GCD's of the smallest and largest parts in the partitions of 2n into exactly two parts.
FORMULA
a(n) = Sum_{i=1..n} gcd(2*n-i, i).
a(n) = (A018804(2*n)-n)/2. - Sebastian Karlsson, Oct 03 2021
Conjecture: a(n) = (1/4)*Sum_{k = 1..4*n} (-1)^k *gcd(k, 8*n). - Peter Bala, Jan 01 2024
Sum_{k=1..n} a(k) ~ (Pi^2/4)*n^2 * (log(n) + 2*gamma - 1/2 + log(2)/6 - Pi^2/16 - zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - Amiram Eldar, Mar 30 2024
EXAMPLE
a(6) = 17; the partitions of 2(6) = 12 into two parts are: (11,1),(10,2),(9,3),(8,4),(7,5),(6,6). Then a(6) = gcd(11,1) + gcd(10,2) + gcd(9,3) + gcd(8,4) + gcd(7,5) + gcd(6,6) = 1 + 2 + 3 + 4 + 1 + 6 = 17.
MAPLE
A234307:=n->add( gcd(2*n-i, i), i=1..n); seq(A234307(n), n=1..100);
MATHEMATICA
Table[Sum[GCD[2n - i, i], {i, n}], {n, 100}]
f[p_, e_] := (e*(p - 1)/p + 1)*p^e; a[n_] := (Times @@ f @@@ FactorInteger[2*n] - n)/2; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
PROG
(PARI) a(n) = sum(i=1, n, gcd(i, 2*n-i)); \\ Michel Marcus, Dec 23 2013
(PARI) a(n) = {my(f = factor(2*n)); (prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; p^(e-1)*(p+e*(p-1))) - n)/2; } \\ Amiram Eldar, Mar 30 2024
CROSSREFS
Cf. A001105 (sum of parts), A002378 (differences of parts).
Sequence in context: A188018 A360532 A289241 * A175769 A352211 A160277
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 22 2013
STATUS
approved