OFFSET
1,5
COMMENTS
Number of partitions of 2n into exactly two parts: (2n-i,i) such that i does not divide 2n-i. Complement of A066660.
Number of positive integers k <= n, such that k does not divide 2n-k. For example, a(12) = 5 since there are 5 positive integers k less than or equal to 12 that do not divide 2*12-k. They are 5, 7, 9, 10, and 11. - Wesley Ivan Hurt, Jun 24 2021
LINKS
FORMULA
EXAMPLE
a(6) = 1; In this case, 2(6) = 12 has exactly 6 partitions into two parts: (11,1), (10,2), (9,3), (8,4), (7,5), (6,6). Note that 5 does not divide 7 but the smallest parts of the other partitions divide their corresponding largest parts. Therefore, a(6) = 1.
MATHEMATICA
Table[n + 1 - DivisorSigma[0, 2n], {n, 100}]
PROG
(PARI) a(n) = n + 1 - numdiv(2*n); \\ Michel Marcus, Dec 23 2013
(GAP) List([1..10^4], n->n+1-Tau(2*n)); # Muniru A Asiru, Feb 04 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 22 2013
STATUS
approved