This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A233565 Numerators of the autosequence preceding Br(n)=A229979(n)/(1 followed by A050932(n)). 1
 0, 0, 0, 1, 2, 5, 5, 7, 7, 5, 5, 11, 11, 91, 91, -9, -9, 1207, 1207, -10849, -10849, 65879, 65879, -783127, -783127, 61098739, 61098739, -2034290233, -2034290233, 72986324461, 72986324461 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Br(n)=0, 1, 1, 1/2, 0, -1/6, 0, 1/6, 0, -3/10, 0, 5/6, 0, -691/210, 0,.. . a(n) is the numerators of  Bp2(n)=0, 0, 0, 1, 2, 5/2, 5/2, 7/3, 7/3, 5/2, 5/2, 11/5, 11/5, 91/30, 91/30,... . Bp2(n) is an autosequence like Br(n). With possible future sequences we can write the array PB 1,     0,   0,   0,   0,    0,    0,   0, 0, 1,     1,   0,   0,   0,    0,    0,   0, 0, 1,   3/2,   1,   0,   0,    0,    0,   0, 0, 1,   5/3,   2,   1,   0,    0,    0,   0, 0, 1,   5/3, 5/2, 5/2,   1,    0,    0,   0, 0, 1, 49/30, 5/2, 7/2,   3,    1,    0,   0, 0, 1, 49/30, 7/3, 7/2, 14/3, 7/2,    1,   0, 0, 1, 58/35, 7/3,   3, 14/3,   6,    4,   1, 0, 1, 58/35, 5/2,   3,  7/2,   6, 15/2, 9/2, 1, etc. The first column is A000012. The second A165142(n+1)/(1 followed by A100650(n)). The third is Bp2(n+1). The next others are built by the same way. From the second,every column is based on A164555(n)/A027642(n). With negative (2*n+2)-th diagonals,the array without 0's is the triangle NPB. The sum of every row is 1, 0, 1/2, -1/3, 1/3, -11/30, 11/30, -12/35, 12/35, -79/210, 79/210,... . See A176250(n+2)/A100650(n). The inverse of NPB is A193815(n)/(A003056(n) with 1 instead of 0). LINKS EXAMPLE a(0)=a(1)=0, a(i)=numerators of 0+Br(0)=0, 0+Br(1)=1, 1+Br(2)=2, 2+Br(3)=5/2, 5/2+Br(4)=5/2,... . MATHEMATICA nmax = 30; Br[0] = 0; Br[1] = Br[2] = 1; Br[n_] := Numerator[2*n*BernoulliB[n-1]] / Denominator[n*BernoulliB[n-1]]; Bp2 = Join[{0, 0}, Table[Br[n], {n, 0, nmax-2}] // Accumulate]; a[n_] := Numerator[Bp2[[n+1]]]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Dec 18 2013 *) CROSSREFS Cf. A233316. Sequence in context: A004599 A197695 A245083 * A121359 A082087 A263317 Adjacent sequences:  A233562 A233563 A233564 * A233566 A233567 A233568 KEYWORD sign AUTHOR Paul Curtz, Dec 13 2013 EXTENSIONS a(17)-a(30) from Jean-François Alcover, Dec 18 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 18:03 EST 2019. Contains 329809 sequences. (Running on oeis4.)