

A197695


Decimal expansion of pi/(6+2*pi).


2



2, 5, 5, 7, 6, 3, 6, 7, 8, 1, 5, 2, 2, 3, 9, 2, 0, 7, 3, 2, 6, 1, 4, 4, 9, 0, 1, 0, 6, 9, 1, 9, 0, 0, 2, 4, 1, 8, 9, 1, 1, 5, 4, 8, 9, 2, 9, 0, 6, 7, 8, 2, 0, 8, 0, 4, 3, 9, 1, 7, 9, 1, 7, 0, 7, 0, 1, 9, 7, 5, 1, 8, 0, 7, 1, 6, 2, 5, 2, 2, 1, 0, 1, 3, 8, 5, 6, 3, 5, 7, 5, 2, 1, 5, 8, 0, 4, 3, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Least x>0 such that sin(bx)=cos(cx) (and also sin(cx)=cos(bx)), where b=3 and c=pi; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.


LINKS

Table of n, a(n) for n=0..98.


EXAMPLE

x=0.255763678152239207326144901069190024189115...


MATHEMATICA

b = 3; c = Pi;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .2, .3}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197695 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, .4}]
RealDigits[Pi/(6+2*Pi), 10, 120][[1]] (* Harvey P. Dale, Jun 24 2015 *)


CROSSREFS

Cf. A197682.
Sequence in context: A228587 A021395 A004599 * A245083 A233565 A121359
Adjacent sequences: A197692 A197693 A197694 * A197696 A197697 A197698


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 17 2011


STATUS

approved



