login
A197696
Decimal expansion of Pi/(6 + 4*Pi).
2
1, 6, 9, 2, 0, 8, 7, 6, 5, 6, 1, 4, 1, 0, 9, 5, 9, 3, 8, 1, 0, 5, 4, 6, 9, 0, 1, 9, 9, 1, 4, 0, 7, 5, 6, 7, 0, 0, 5, 0, 0, 9, 5, 8, 4, 0, 7, 9, 3, 8, 5, 6, 4, 9, 7, 2, 1, 3, 1, 0, 0, 5, 7, 4, 6, 4, 9, 1, 7, 4, 6, 5, 1, 3, 8, 0, 2, 8, 6, 1, 6, 6, 8, 9, 2, 6, 2, 5, 0, 4, 3, 3, 6, 2, 9, 4, 8, 1, 7
OFFSET
0,2
COMMENTS
Least x > 0 such that sin(b*x) = cos(c*x) (and also sin(c*x) = cos(b*x)), where b=3 and c=2*Pi; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.
EXAMPLE
0.169208765614109593810546901991407567005009...
MATHEMATICA
b = 3; c = 2*Pi;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .15, .17}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197696 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, .3}]
CROSSREFS
Cf. A197682.
Sequence in context: A296478 A195403 A021595 * A072364 A087016 A161480
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 17 2011
STATUS
approved