login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233148
Number of n-edge-colorings of the cubical graph.
1
0, 0, 0, 24, 9216, 772680, 20864640, 281690640, 2408469504, 14923820016, 72840764160, 295839890280, 1038542714880, 3238606068984, 9155710252416, 23832538897440, 57817164625920, 131989025850720, 285757100158464, 590483650831416, 1170770734955520
OFFSET
0,4
COMMENTS
Also number of n-colorings of the cuboctahedral graph.
LINKS
Eric Weisstein's World of Mathematics, Cubical Graph
Eric Weisstein's World of Mathematics, Cuboctahedral Graph
Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
FORMULA
a(n) = n*(n-1)*(n-2)*(n^9 -21*n^8 +203*n^7 -1191*n^6 +4701*n^5 -13031*n^4 +25524*n^3 -34192*n^2 +28400*n -11072).
G.f.: -24*x^3*(29584*x^9 +491264*x^8 +2823089*x^7 +6622739*x^6 +6646049*x^5 +2837531*x^4 +480491*x^3 +27281*x^2 +371*x+ 1) / (x-1)^13.
MAPLE
a:= n-> n*(n-1)*(n-2) *(-11072 +(28400 +(-34192 +(25524 +(-13031
+(4701 +(-1191 +(203 +(-21+n)*n)*n)*n)*n)*n)*n)*n)*n):
seq(a(n), n=0..30);
CROSSREFS
Sequence in context: A167824 A266658 A065142 * A195681 A239166 A065236
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 04 2013
STATUS
approved