login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233149
a(n) = ((n^2+1)^3) - s, where s is the nearest square to (n^2+1)^3.
0
-1, 4, -24, 13, -113, 28, -316, 49, -681, 76, -1256, 109, -2089, 148, -3228, 193, -4721, 244, -6616, 301, -8961, 364, -11804, 433, -15193, 508, -19176, 589, -23801, 676, -29116, 769, -35169, 868, -42008, 973, -49681, 1084, -58236, 1201, -67721, 1324, -78184, 1453, -89673, 1588, -102236, 1729, -115921, 1876
OFFSET
1,2
FORMULA
a(n) = (n^2+1)^3 - (round(sqrt((n^2+1)^3)))^2.
Recurrence formula: a(n)= - a(n-2) + 4*a(n-4) - 6*a(n-6) + 4*a(n-8).
a(n) = -A077119(n^2+1). - R. J. Mathar, Jan 18 2021
a(2*n) = A056107(n). - R. J. Mathar, Jan 18 2021
EXAMPLE
Table of n, n^2, n^2+1, (n^2+1)^3, closest square, difference:
1 1 2 8 9 -1
2 4 5 125 121 4
3 9 10 1000 1024 -24
4 16 17 4913 4900 1
...
MATHEMATICA
aa = {}; Do[AppendTo[aa, (n^2 + 1)^3 - Round[Sqrt[(n^2 + 1)^3]]^2], {n, 1, 50}]; aa
CROSSREFS
Sequence in context: A350887 A216923 A355992 * A169688 A222595 A103225
KEYWORD
sign,easy
AUTHOR
Artur Jasinski, Dec 05 2013
STATUS
approved