The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A232719 Sum_{k=1,...,2n} (-1)^k binomial(8*n,4*k). 2
 -69, 9231, -1254465, 170459391, -23162405889, 3147359850495, -427670341173249, 58112808641953791, -7896499249846943745, 1072994093040913088511, -145800852665566628937729, 19811748057028406926114815, -2692064922113214275888611329, 365803841438484687010033303551 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All elements of this sequence are multiples of 3. Any proof? This follows from the recurrence relation. - Charles R Greathouse IV, Dec 13 2013 LINKS Colin Barker, Table of n, a(n) for n = 1..450 Index entries for linear recurrences with constant coefficients, signature (-135,120,16). FORMULA a(n) = (-1)^n/2 * ((2+sqrt(2))^(4*n) + (2-sqrt(2))^(4*n)) - 1. - Vaclav Kotesovec, Dec 06 2013 G.f.: 3*x*(28*x+23) / ((x-1)*(16*x^2+136*x+1)). - Colin Barker, Dec 06 2013 MAPLE A232719:=n->add((-1)^i*binomial(8*n, 4*i), i=1..2*n); seq(A232719(n), n=1..20); # Wesley Ivan Hurt, Dec 06 2013 MATHEMATICA A[n_] := Sum[(-1)^k Binomial[8 n, 4 k], {k, 1, 2n}]; Array[A, 33] Table[FullSimplify[(-1)^n/2*((2+Sqrt[2])^(4*n)+(2-Sqrt[2])^(4*n))-1], {n, 1, 15}] (* Vaclav Kotesovec, Dec 06 2013 *) CoefficientList[Series[3 (28 x + 23) / ((x - 1) (16 x^2 + 136 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 09 2014 *) PROG (PARI) a(n)=sum(k=1, 2*n, (-1)^k*binomial(8*n, 4*k)) \\ Charles R Greathouse IV, Dec 13 2013 (PARI) Vec(3*x*(28*x+23)/((x-1)*(16*x^2+136*x+1)) + O(x^100)) \\ Colin Barker, Nov 09 2014 CROSSREFS Cf. A232732. Sequence in context: A297550 A049000 A234824 * A297807 A251002 A194612 Adjacent sequences: A232716 A232717 A232718 * A232720 A232721 A232722 KEYWORD sign,easy AUTHOR José María Grau Ribas, Nov 28 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 10:32 EST 2022. Contains 358556 sequences. (Running on oeis4.)