OFFSET
0,1
COMMENTS
Same as decimal expansion of P/Pi, where P is the Universal parabolic constant (A103710). - Jonathan Sondow, Jan 19 2015
According to Wadim Zudilin, Campbell's formula (see below) follows from results of Borwein, Borwein, Glasser, Wan (2011): Take n=-2, s=1/4 in equations (4) and (20) to see that the formula is about evaluating K_{-2,1/4}. Take r=-1/2, s=1/4 in (76) to see that K_{-2,1/4} = cos(Pi/4)-K_{0,1/4}/16. Finally, use (51) and (52) to conclude that K_{0,1/4} = 2G_{1/4} = 2*log(1+sqrt(2)). - Jonathan Sondow, Sep 03 2016
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
D. Borwein, J. M. Borwein, M. L. Glasser, J. G. Wan, Moments of Ramanujan's generalized elliptic integrals and extensions of Catalan's constant, J. Math. Anal. Appl., 384 (2) (2011), 478-496.
M. Hajja, Review Zbl 1291.51018, zbMATH 2015.
M. Hajja, Review Zbl 1291.51016, zbMATH 2015.
J. Sondow, The parbelos, a parabolic analog of the arbelos, arXiv 2012, Amer. Math. Monthly, 120 (2013), 929-935.
E. Tsukerman, Solution of Sondow's problem: a synthetic proof of the tangency property of the parbelos, arXiv:1210.5580 [math.MG], 2012-2013; Amer. Math. Monthly, 121 (2014), 438-443.
FORMULA
Empirical: equals 3F2([-1/2,1/4,3/4],[1/2,1],1). - John M. Campbell, Aug 27 2016
EXAMPLE
0.730708084248143098345459389970990137736723287291660275735498...
MATHEMATICA
RealDigits[(Sqrt[2] + Log[1 + Sqrt[2]])/Pi, 10, 100]
PROG
(PARI) (sqrt(2) + log(1 + sqrt(2)))/Pi \\ G. C. Greubel, Feb 02 2018
(Magma) R:= RealField(); (Sqrt(2) + Log(1 + Sqrt(2)))/Pi(R); // G. C. Greubel, Feb 02 2018
CROSSREFS
KEYWORD
AUTHOR
Jonathan Sondow, Nov 28 2013
STATUS
approved