login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232667
Primes p such that the p-th odious number is prime; odious primes p such that 2p-1 is prime.
3
2, 7, 19, 31, 37, 79, 97, 157, 199, 211, 229, 271, 307, 331, 367, 379, 439, 499, 577, 601, 607, 661, 727, 829, 877, 967, 997, 1009, 1069, 1171, 1279, 1459, 1531, 1609, 1627, 1657, 1759, 1867, 2011, 2029, 2131, 2137, 2311, 2551, 2557, 3037, 3061, 3109, 3169, 3181
OFFSET
1,1
COMMENTS
From Antti Karttunen, Nov 29 & 30 2013: (Start)
This sequence is the intersection of A005382 and A027697.
Proof:
A000069(n) reduces according to the bit parity of n-1 as follows:
A000069(n) = 2n - 2 when n-1 is odious.
A000069(n) = 2n - 1 when n-1 is evil.
which means that no prime in this sequence can be evil, as then p-1 would be an odious number (true for all odd primes) and A000069(p) would be 2(p-1) which obviously cannot be a prime, contradicting the requirement. Thus all primes present must belong to the set of odious primes, A027697.
As each prime p here is thus odious, it means that each p-1 is an evil number (A001969), and thus A000069(p) = 2p-1. And the stipulation that it also must be prime, is just what is required from the terms of A005382. Thus this sequence contains exactly those primes that occur in both A005382 and A027697.
Equally: this is the intersection of A000069 and A005382, thus prime p occurs here iff A000120(p) is odd and 2p-1 is prime also.
Also, apart from the first term (2), all the primes (2*a(n))-1 are also odious. This follows because for any odd number k, A000120(2k-1) = A000120(k).
(End)
LINKS
EXAMPLE
7 is a prime and A000069(7) = 13, a prime also, thus 7 is in this sequence.
19 is a prime and A000069(19) = 37, a prime also, thus 19 is in this sequence.
Alternatively:
7 is a prime, 2*7-1 = 13 is also prime, and when written in binary, 7 = '111', with an odd number of 1-bits. Thus 7 is included in this sequence.
The next time this happens, is for 19, as it is a prime, 2*19-1 = 37 is also prime, and when written in binary, 19 = '10011', also has on odd number of 1-bits.
PROG
(Scheme, with Antti Karttunen's IntSeq-library and Aubrey Jaffer's SLIB-library)
(require 'factor) ;; Includes predicate prime? from SLIB-library.
;; Implementation based on the original definition:
(define A232667 (COMPOSE A000040 (MATCHING-POS 1 1 (lambda (k) (prime? (A000069 (A000040 k)))))))
;; Alternative implementation based on the other definition:
(define A232667 (MATCHING-POS 1 1 (lambda (n) (and (odd? (A000120 n)) (prime? n) (prime? (- (* 2 n) 1))))))
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited and erroneous terms removed by Antti Karttunen, Nov 29-30 2013
STATUS
approved