login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232666
6-free Fibonacci numbers.
3
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 4, 93, 97, 190, 287, 477, 764, 1241, 2005, 541, 2546, 3087, 5633, 8720, 14353, 23073, 37426, 60499, 97925, 26404, 124329, 150733, 275062, 425795, 700857, 1126652, 1827509, 2954161, 796945, 3751106, 4548051, 8299157, 12847208, 21146365, 33993573
OFFSET
0,4
COMMENTS
The sequences of n-free Fibonacci numbers were suggested by John H. Conway.
a(n) is the sum of the two previous terms divided by the largest possible power of 6.
4-free Fibonacci numbers are A224382.
The sequence coincides with the Fibonacci sequence until the first multiple of 6 in the Fibonacci sequence: 144, which in this sequence is divided by 36 to produce 4.
7-free Fibonacci numbers is A078414.
LINKS
B. Avila, T. Khovanova, Free Fibonacci Sequences, J. Int. Seq. 17 (2014) # 14.8.5.
MATHEMATICA
sixPower[n_] := (a = Transpose[FactorInteger[n]]; a2 = Position[a[[1]], 2]; a3 = Position[a[[1]], 3]; If[Length[a2] == 0 || Length[a3] == 0 , res = 0, res = Min[a[[2]][[a2[[1]][[1]]]], a[[2]][[a3[[1]][[1]]]]]]; res); sixFree[n_] := n/6^sixPower[n]; appendNext6Free[list_] := Append[list, sixFree[list[[-1]] + list[[-2]]]]; Nest[appendNext6Free, {0, 1}, 50]
CROSSREFS
Sequence in context: A132634 A096275 A093089 * A093091 A105471 A189722
KEYWORD
nonn
AUTHOR
STATUS
approved