login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232274
Integer areas A of the integer-sided triangles such that the length of the inradius and the circumradius are both a perfect square.
1
168, 2688, 13608, 43008, 105000, 108000, 217728, 403368, 688128, 1102248, 1680000, 1728000
OFFSET
1,1
COMMENTS
Subset of A208984.
The areas of the primitive triangles of sides (a, b, c) and inradius, circumradius equals respectively to r and R are 672, 108000, ... The sides of the nonprimitive triangles are of the form (a*k^2, b*k^2, c*k^2) with r' = r*k^2 and R' = R*k^2 where r', R' are respectively the inradius and the circumradius of the nonprimitive triangles. The areas A' of the nonprimitive triangles are A' = A*k^4.
The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. The inradius r is given by r = A/s and the circumradius is given by R = abc/4A.
The following table gives the first values (A, a, b, c, r, R).
+---------+------+------+------+-----+------+
| A | a | b | c | r | R |
+---------+------+------+------+-----+------+
| 168 | 14 | 30 | 40 | 4 | 25 |
| 2688 | 56 | 120 | 160 | 16 | 100 |
| 13608 | 126 | 270 | 360 | 36 | 225 |
| 43008 | 224 | 480 | 640 | 64 | 400 |
| 105000 | 350 | 750 | 1000 | 100 | 625 |
| 108000 | 480 | 510 | 510 | 144 | 289 |
| 217728 | 504 | 1080 | 1440 | 144 | 900 |
| 403368 | 686 | 1470 | 1960 | 196 | 1225 |
| 688128 | 896 | 1920 | 2560 | 256 | 1600 |
| 1102248 | 1134 | 2430 | 3240 | 324 | 2025 |
| 1680000 | 1400 | 3000 | 4000 | 400 | 2500 |
| 1728000 | 1920 | 2040 | 2040 | 576 | 1156 |
+---------+------+------+------+-----+------+
LINKS
Mohammad K. Azarian, Solution of problem 125: Circumradius and Inradius, Math Horizons, Vol. 16, No. 2 (Nov. 2008), p. 32.
Eric W. Weisstein, MathWorld: Circumradius
Eric W. Weisstein, MathWorld: Inradius
EXAMPLE
a(1) = 168 because, for (a,b,c) = (14, 30, 40) => s= (14 + 30 + 40)/2 = 42, and
A = sqrt(42*(42-14)*(42-30)*(42-40)) = sqrt(28224) = 168;
R = abc/4A = 14*30*40/(4*168) = 25;
r = A/s = 168/42 = 4.
MATHEMATICA
nn=2000; Do[s=(a+b+c)/2; If[IntegerQ[s], area2=s (s-a)(s-b)(s-c); If[0<area2&&IntegerQ[Sqrt[area2]]&&IntegerQ[Sqrt[Sqrt[area2]/s]]&&IntegerQ[Sqrt[a*b*c/(4*Sqrt[area2])]], Print[Sqrt[area2], " ", a " ", b, " ", c, " ", Sqrt[area2]/s, " ", a*b*c/(4*Sqrt[area2])]]], {a, nn}, {b, a}, {c, b}]
CROSSREFS
Sequence in context: A279725 A234730 A234815 * A110075 A360623 A331908
KEYWORD
nonn,hard
AUTHOR
Michel Lagneau, Nov 22 2013
STATUS
approved