login
A110075
Numbers of the form 3*2^p*(2^p-1) where 2^p-1 is a (Mersenne) prime greater than 3.
1
168, 2976, 48768, 201302016, 51539214336, 824632147968, 13835058048839712768, 15950735949418990467928155695723053056, 1149371655649416643768760268505821828785983929289015296
OFFSET
1,1
COMMENTS
If n is in the sequence then sigma(n) = 4*(n-phi(n)) because phi(n) = phi(3)*phi(2^p)*phi(2^p-1) = 2^p*(2^p-2) hence 4*(n-phi(n)) = 4*(3*2^p*(2^p-1)-2^p*(2^p-2)) = 4*2^p* (3*2^p-3-2^p+2) = 4*2^p*(2^(p+1)-1) = sigma(3)*sigma(2^p-1)* sigma(2^p) = sigma(3*(2^p-1)*2^p) = sigma(n). So this sequence is a subsequence of A068420.
MATHEMATICA
Do[If[PrimeQ[2^Prime[n] - 1], Print[3*2^Prime[n]* (2^Prime[n] - 1)]], {n, 2, 28}]
CROSSREFS
Sequence in context: A234730 A234815 A232274 * A360623 A331908 A231995
KEYWORD
nonn
AUTHOR
Farideh Firoozbakht, Jul 27 2005; definition corrected Apr 22 2006
STATUS
approved