OFFSET
1,1
COMMENTS
If n is in the sequence then sigma(n) = 4*(n-phi(n)) because phi(n) = phi(3)*phi(2^p)*phi(2^p-1) = 2^p*(2^p-2) hence 4*(n-phi(n)) = 4*(3*2^p*(2^p-1)-2^p*(2^p-2)) = 4*2^p* (3*2^p-3-2^p+2) = 4*2^p*(2^(p+1)-1) = sigma(3)*sigma(2^p-1)* sigma(2^p) = sigma(3*(2^p-1)*2^p) = sigma(n). So this sequence is a subsequence of A068420.
MATHEMATICA
Do[If[PrimeQ[2^Prime[n] - 1], Print[3*2^Prime[n]* (2^Prime[n] - 1)]], {n, 2, 28}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Farideh Firoozbakht, Jul 27 2005; definition corrected Apr 22 2006
STATUS
approved