login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110075 Numbers of the form 3*2^p*(2^p-1) where 2^p-1 is a (Mersenne) prime greater than 3. 1
168, 2976, 48768, 201302016, 51539214336, 824632147968, 13835058048839712768, 15950735949418990467928155695723053056, 1149371655649416643768760268505821828785983929289015296 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

If n is in the sequence then sigma(n) = 4*(n-phi(n)) because phi(n) = phi(3)*phi(2^p)*phi(2^p-1) = 2^p*(2^p-2) hence 4*(n-phi(n)) = 4*(3*2^p*(2^p-1)-2^p*(2^p-2)) = 4*2^p* (3*2^p-3-2^p+2) = 4*2^p*(2^(p+1)-1) = sigma(3)*sigma(2^p-1)* sigma(2^p) = sigma(3*(2^p-1)*2^p) = sigma(n). So this sequence is a subsequence of A068420.

LINKS

Table of n, a(n) for n=1..9.

MATHEMATICA

Do[If[PrimeQ[2^Prime[n] - 1], Print[3*2^Prime[n]* (2^Prime[n] - 1)]], {n, 2, 28}]

CROSSREFS

Cf. A000668, A068420.

Sequence in context: A234730 A234815 A232274 * A331908 A231995 A223243

Adjacent sequences:  A110072 A110073 A110074 * A110076 A110077 A110078

KEYWORD

nonn

AUTHOR

Farideh Firoozbakht, Jul 27 2005; definition corrected Apr 22 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 20:28 EST 2022. Contains 350480 sequences. (Running on oeis4.)