login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110078 a(n) is number of solutions of the equation sigma(x)=10^n. 4
1, 0, 0, 0, 2, 4, 7, 9, 15, 23, 36, 53, 85, 124, 202, 289, 425, 603, 864, 1209, 1699, 2397, 3386, 4665, 6440, 8801, 12101, 16338, 22078, 29565, 39557, 52615, 69823, 92338, 121622, 159435, 208513, 271775, 353436, 457759, 591191, 760763, 976412, 1250011, 1596723, 2034474, 2585159, 3277192, 4145341, 5232888, 6591553 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Conjecture: For n>2, a(n+1)>a(n).
LINKS
Max A. Alekseyev, Computing the Inverses, their Power Sums, and Extrema for Euler's Totient and Other Multiplicative Functions. Journal of Integer Sequences, Vol. 19 (2016), Article 16.5.2
FORMULA
a(n) = coefficient of x^n*y^n in Prod_p Sum_{u, v} x^u*y^v, where the product is taken over all primes p and the sum is taken over such u, v that 2^u*5^v = sigma(p^k) for some nonnegative integer k. - Max Alekseyev, Aug 08 2005
EXAMPLE
a(4)=2 because 8743 & 9481 are all solutions of the equation sigma(x)=10^4.
PROG
(PARI) { a(d) = local(X, Y, P, L, n, f, p, m, l); X=Pol([1, 0], x); Y=Pol([1, 0], y); P=Set(); L=listcreate(10000); for(i=0, d, for(j=0, d, n=2^i*5^j; if(n==1, next); f=factorint(n-1)[, 1]; for(k=1, length(f), p=f[k]; m=n*(p-1)+1; while(m%p==0, m\=p); if(m==1, l=setsearch(P, p); if(l==0, l=setsearch(P, p, 1); P=setunion(P, [p]); listinsert(L, 1, l)); L[l]+=X^i*Y^j ) ) )); R=1+O(x^(d+1))+O(y^(d+1)); for(l=1, length(L), R*=L[l]); listkill(L); vector(d+1, n, polcoeff(polcoeff(R, n-1), n-1)) } (Alekseyev)
CROSSREFS
Sequence in context: A278977 A097433 A308758 * A257064 A085800 A155190
KEYWORD
nonn
AUTHOR
Farideh Firoozbakht, Aug 01 2005
EXTENSIONS
More terms from Max Alekseyev, Aug 08 2005
Terms a(44) onward from Max Alekseyev, Mar 04 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 03:11 EDT 2024. Contains 371850 sequences. (Running on oeis4.)