This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A232265 a(n) = 10*binomial(9*n + 10, n)/(9*n + 10). 14
 1, 10, 135, 2100, 35475, 632502, 11714745, 223198440, 4346520750, 86128357150, 1731030945644, 35202562937100, 723029038312230, 14976976398326250, 312522428615310000, 6563314391270476752, 138617681440915119975, 2942332729799060033100, 62735156704285184848950 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r,n)/(n*p + r), where p = 9, r = 10. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007. J-C. Aval, Multivariate Fuss-Catalan Numbers, Discrete Math., 308 (2008), 4660-4669. Thomas A. Dowling, Catalan Numbers Chapter 7 Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955. Wikipedia, Fuss-Catalan number FORMULA G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 9, r = 10. From _Peter Bala, Oct 16 2015: (Start) O.g.f. A(x) = 1/x * series reversion (x*C(-x)^10), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11. A(x)^(1/10) is the o.g.f. for A062994. (End) MATHEMATICA Table[10 Binomial[9 n + 10, n]/(9 n + 10), {n, 0, 30}] PROG (PARI) a(n) = 10*binomial(9*n+10, n)/(9*n+10); (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/10))^10+x*O(x^n)); polcoeff(B, n)} (MAGMA) [10*Binomial(9*n+10, n)/(9*n+10): n in [0..30]]; CROSSREFS Cf. A000108, A143554, A234505, A234506, A234507, A234508, A234509, A234510, A234513. Cf. A062994, A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233668 (k = 6), A233743 (k = 7), A233835 (k = 8), A234467 (k = 9), A229963 (k = 11). Sequence in context: A218440 A048666 A114936 * A095653 A024135 A050408 Adjacent sequences:  A232262 A232263 A232264 * A232266 A232267 A232268 KEYWORD nonn,easy AUTHOR Tim Fulford, Dec 28 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 06:08 EDT 2019. Contains 328106 sequences. (Running on oeis4.)