The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A232245 Sum of the number of ones in binary representation of n and n^2. 0
 0, 2, 2, 4, 2, 5, 4, 6, 2, 5, 5, 8, 4, 7, 6, 8, 2, 5, 5, 8, 5, 9, 8, 7, 4, 8, 7, 10, 6, 9, 8, 10, 2, 5, 5, 8, 5, 9, 8, 11, 5, 8, 9, 11, 8, 12, 7, 9, 4, 8, 8, 9, 7, 12, 10, 12, 6, 10, 9, 12, 8, 11, 10, 12, 2, 5, 5, 8, 5, 9, 8, 11, 5, 9, 9, 13, 8, 11, 11, 10, 5, 9 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The sequence is never 1 or 3, but seems to take on all other values. The fact it is never 3 can be used to prove if n^2 has exactly 4 1's then it must have an even number of 0's (A231898). LINKS FORMULA a(n) = A159918(n) + A000120(n). EXAMPLE 5 is 101 and 25 is 11001, so a(5) = 2 + 3 = 5. PROG (JavaScript) function bitCount(n) { var i, c, s; c=0; s=n.toString(2); for (i=0; i

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 11:38 EDT 2020. Contains 337318 sequences. (Running on oeis4.)