login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A232248
Denominators of the expected length of a random cycle in a random permutation.
4
1, 2, 12, 24, 720, 1440, 60480, 4480, 3628800, 1036800, 479001600, 958003200, 2615348736000, 172204032, 2414168064000, 62768369664000, 2462451425280000, 9146248151040000, 51090942171709440000, 136216903680000, 33720021833328230400000, 67440043666656460800000
OFFSET
1,2
LINKS
FORMULA
a(n) = Denominator( 1/(n-1)! * Sum_{i=1..n} A132393(n,i)/i ). - Alois P. Heinz, Nov 23 2013
a(n) = denominator(Sum_{k=0..n} A002657(k)/A091137(k)) (conjectured). - Michel Marcus, Jul 19 2019
MAPLE
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
expand(add(multinomial(n, n-i*j, i$j)/j!*(i-1)!^j
*b(n-i*j, i-1) *x^j, j=0..n/i))))
end:
a:= n->denom((p->add(coeff(p, x, i)/i, i=1..n))(b(n$2))/(n-1)!):
seq(a(n), n=1..30); # Alois P. Heinz, Nov 21 2013
# second Maple program:
a:= n-> denom(add(abs(combinat[stirling1](n, i))/i, i=1..n)/(n-1)!):
seq(a(n), n=1..30); # Alois P. Heinz, Nov 23 2013
MATHEMATICA
Table[Denominator[Total[Map[Total[#]!/Product[#[[i]], {i, 1, Length[#]}]/Apply[Times, Table[Count[#, k]!, {k, 1, Max[#]}]]/(Total[#]-1)!/Length[#]&, Partitions[n]]]], {n, 1, 25}]
CROSSREFS
Numerators are A232193.
Sequence in context: A126962 A002207 A181814 * A091137 A347284 A092825
KEYWORD
nonn,frac
AUTHOR
Geoffrey Critzer, Nov 21 2013
STATUS
approved