login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232243
a(n) = wt(n^2) - wt(n), where wt(n) = A000120(n) is the binary weight function.
2
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 0, 1, 0, 0, 0, 1, 1, 2, 1, 3, 2, -1, 0, 2, 1, 2, 0, 1, 0, 0, 0, 1, 1, 2, 1, 3, 2, 3, 1, 2, 3, 3, 2, 4, -1, -1, 0, 2, 2, 1, 1, 4, 2, 2, 0, 2, 1, 2, 0, 1, 0, 0, 0, 1, 1, 2, 1, 3, 2, 3, 1, 3, 3, 5, 2, 3, 3, 0, 1, 3, 2, 4, 3, 3, 3, 2, 2, 5, 4, 0, -1, 1, -1, -1, 0, 2, 2, 2
OFFSET
0,12
COMMENTS
A077436 lists n for which a(n) = 0.
A094694 lists n for which a(n) < 0.
LINKS
FORMULA
a(n) = A159918(n) - A000120(n).
EXAMPLE
a(5): 5 = 101_2, 25 = 11001_2, so a(5) = 3 - 2 = 1.
a(23): 23 = 10111_2, 529 = 10001001_2, so a(23) = 3 - 4 = -1.
PROG
(JavaScript)
function bitCount(n) {
var i, c, s;
c=0;
s=n.toString(2);
for (i=0; i<s.length; i++)
if (s.charAt(i)==1)
c++;
return c;
}
for (i=0; i<100; i++) document.write(bitCount(i*i)-bitCount(i)+", ");
(Python)
def A232243(n): return (n**2).bit_count()-n.bit_count()
print(list(A232243(n) for n in range(10**2))) # Dumitru Damian, Mar 04 2023
(PARI) a(n) = hammingweight(n^2) - hammingweight(n); \\ Michel Marcus, Mar 05 2023
CROSSREFS
KEYWORD
sign,base
AUTHOR
Jon Perry, Nov 20 2013
STATUS
approved