login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231373
G.f. A(x) satisfies: A(x-x^2-x^3) = 1/sqrt(1-2*x-3*x^2), which is the g.f. the central trinomial coefficients (A002426).
1
1, 1, 4, 16, 71, 327, 1550, 7490, 36720, 182028, 910330, 4585318, 23233722, 118315318, 605088690, 3105994302, 15994906965, 82602799485, 427662046960, 2219130114108, 11538302709769, 60102637378353, 313591732265662, 1638671208390738, 8574718477933404, 44926247350136232
OFFSET
0,3
LINKS
FORMULA
Self-convolution yields A038112.
G.f. A(x) satisfies:
(1) A(x) = sqrt( Sum_{n>=0} d^n/dx^n x^(2*n)*(1+x)^n/n! ).
(2) A(x) = sqrt((1+x)*(5-27*x)*A(x)^6 - 1)/2, from a formula by Mark van Hoeij in A038112.
(3) A(x) = sqrt( d/dx x*G(x) ) where G(x) = Series_Reversion(x-x^2-x^3)/x is the g.f. of A001002.
(4) A(x) = 1/sqrt(1 - 2*x*G(x) - 3*x^2*G(x)^2) where G(x) = Series_Reversion(x-x^2-x^3)/x is the g.f. of A001002.
Sum_{k=0..n} a(k)*a(n-k) = Sum_{k=0..n} C(n+k, k)*C(k, n-k), from a formula by Paul Barry in A038112.
Recurrence: 25*(n-2)*(n-1)*n*a(n) = 110*(n-2)*(n-1)*(2*n-3)*a(n-1) - (n-2)*(214*n^2 - 856*n + 717)*a(n-2) - 33*(2*n-5)*(18*n^2 - 90*n + 113)*a(n-3) - 81*(n-3)*(3*n-11)*(3*n-7)*a(n-4). - Vaclav Kotesovec, Nov 10 2013
a(n) ~ 3^(3/4) * GAMMA(3/4) * (27/5)^n / (2*10^(1/4)*Pi*n^(3/4)). - Vaclav Kotesovec, Dec 29 2013
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 71*x^4 + 327*x^5 + 1550*x^6 +...
where A(x-x^2-x^3)^2 = 1/(1-2*x-3*x^2):
A(x-x^2-x^3) = 1 + x + 3*x^2 + 7*x^3 + 19*x^4 + 51*x^5 + 141*x^6 + 393*x^7 + 1107*x^8 +...+ A002426(n)*x^n +...
The square of the g.f. begins (cf. A038112):
A(x)^2 = 1 + 2*x + 9*x^2 + 40*x^3 + 190*x^4 + 924*x^5 + 4578*x^6 +...
such that A(x)^2 = d/dx x*G(x) where G(x) is the g.f. of A001002:
G(x) = 1 + x + 3*x^2 + 10*x^3 + 38*x^4 + 154*x^5 + 654*x^6 +...
and satisfies G(x-x^2-x^3) = 1/(1-x-x^2).
MATHEMATICA
CoefficientList[Series[Sqrt[D[InverseSeries[Series[x - x^2 - x^3, {x, 0, 30}], x], x]], {x, 0, 30}], x] (* Vaclav Kotesovec, Mar 31 2014 *)
PROG
(PARI) {a(n)=local(G=serreverse(x-x^2-x^3+x^2*O(x^n)), A); A=sqrt(deriv(G)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} \\ = d^n/dx^n F
{a(n)=local(A2=x); A2=1+sum(m=1, n+1, Dx(m, x^(2*m)*(1+x +x*O(x^n))^m/m!)); polcoeff(sqrt(A2), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 08 2013
STATUS
approved