login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x-x^2-x^3) = 1/sqrt(1-2*x-3*x^2), which is the g.f. the central trinomial coefficients (A002426).
1

%I #20 Apr 02 2014 17:03:40

%S 1,1,4,16,71,327,1550,7490,36720,182028,910330,4585318,23233722,

%T 118315318,605088690,3105994302,15994906965,82602799485,427662046960,

%U 2219130114108,11538302709769,60102637378353,313591732265662,1638671208390738,8574718477933404,44926247350136232

%N G.f. A(x) satisfies: A(x-x^2-x^3) = 1/sqrt(1-2*x-3*x^2), which is the g.f. the central trinomial coefficients (A002426).

%H Vincenzo Librandi, <a href="/A231373/b231373.txt">Table of n, a(n) for n = 0..200</a>

%F Self-convolution yields A038112.

%F G.f. A(x) satisfies:

%F (1) A(x) = sqrt( Sum_{n>=0} d^n/dx^n x^(2*n)*(1+x)^n/n! ).

%F (2) A(x) = sqrt((1+x)*(5-27*x)*A(x)^6 - 1)/2, from a formula by _Mark van Hoeij_ in A038112.

%F (3) A(x) = sqrt( d/dx x*G(x) ) where G(x) = Series_Reversion(x-x^2-x^3)/x is the g.f. of A001002.

%F (4) A(x) = 1/sqrt(1 - 2*x*G(x) - 3*x^2*G(x)^2) where G(x) = Series_Reversion(x-x^2-x^3)/x is the g.f. of A001002.

%F Sum_{k=0..n} a(k)*a(n-k) = Sum_{k=0..n} C(n+k, k)*C(k, n-k), from a formula by _Paul Barry_ in A038112.

%F Recurrence: 25*(n-2)*(n-1)*n*a(n) = 110*(n-2)*(n-1)*(2*n-3)*a(n-1) - (n-2)*(214*n^2 - 856*n + 717)*a(n-2) - 33*(2*n-5)*(18*n^2 - 90*n + 113)*a(n-3) - 81*(n-3)*(3*n-11)*(3*n-7)*a(n-4). - _Vaclav Kotesovec_, Nov 10 2013

%F a(n) ~ 3^(3/4) * GAMMA(3/4) * (27/5)^n / (2*10^(1/4)*Pi*n^(3/4)). - _Vaclav Kotesovec_, Dec 29 2013

%e G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 71*x^4 + 327*x^5 + 1550*x^6 +...

%e where A(x-x^2-x^3)^2 = 1/(1-2*x-3*x^2):

%e A(x-x^2-x^3) = 1 + x + 3*x^2 + 7*x^3 + 19*x^4 + 51*x^5 + 141*x^6 + 393*x^7 + 1107*x^8 +...+ A002426(n)*x^n +...

%e The square of the g.f. begins (cf. A038112):

%e A(x)^2 = 1 + 2*x + 9*x^2 + 40*x^3 + 190*x^4 + 924*x^5 + 4578*x^6 +...

%e such that A(x)^2 = d/dx x*G(x) where G(x) is the g.f. of A001002:

%e G(x) = 1 + x + 3*x^2 + 10*x^3 + 38*x^4 + 154*x^5 + 654*x^6 +...

%e and satisfies G(x-x^2-x^3) = 1/(1-x-x^2).

%t CoefficientList[Series[Sqrt[D[InverseSeries[Series[x - x^2 - x^3, {x, 0, 30}], x], x]], {x, 0, 30}], x] (* _Vaclav Kotesovec_, Mar 31 2014 *)

%o (PARI) {a(n)=local(G=serreverse(x-x^2-x^3+x^2*O(x^n)),A);A=sqrt(deriv(G));polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} \\ = d^n/dx^n F

%o {a(n)=local(A2=x); A2=1+sum(m=1, n+1, Dx(m, x^(2*m)*(1+x +x*O(x^n))^m/m!)); polcoeff(sqrt(A2), n)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A002426, A038112, A001002.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Nov 08 2013