login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A231370
Squarefree composite numbers k such that 2 is a primitive root for all prime factors of k.
3
15, 33, 39, 55, 57, 65, 87, 95, 111, 143, 145, 159, 165, 177, 183, 185, 195, 201, 209, 247, 249, 265, 285, 295, 303, 305, 319, 321, 335, 377, 393, 407, 415, 417, 429, 435, 447, 481, 489, 505, 519, 535, 537, 543, 551, 555, 583, 591, 627, 633, 649, 655, 671, 681
OFFSET
1,1
COMMENTS
If k is the smallest integer satisfying 10^k == 1 (mod p), we say that 10 has order k (mod p). If n is the product of distinct primes p_i, the period of 1/n in base b is the least common multiple of the orders of b (mod p_i), provided b and n are relatively prime.
LINKS
Eric Weisstein's World of Mathematics, Primitive Root.
Wikipedia, Binary number.
MATHEMATICA
q[n_] := CompositeQ[n] && SquareFreeQ[n] && AllTrue[FactorInteger[n][[;; , 1]], MultiplicativeOrder[2, #] == # - 1 &]; Select[Range[700], q] (* Amiram Eldar, Oct 03 2021 *)
PROG
(PARI) isok(k) = if ((k>1) && (k%2) && !isprime(k) && issquarefree(k), my(f=factor(k)[, 1]~); for (j=1, #f, if (znorder(Mod(2, f[j])) != (f[j]-1), return(0))); return (1)); return (0); \\ Michel Marcus, Oct 03 2021
CROSSREFS
Subsequence of A024556.
Sequence in context: A140608 A085371 A162887 * A246755 A212311 A262741
KEYWORD
nonn
AUTHOR
STATUS
approved