login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231065
Voids left after packing X patterns into an of n X n array of coins.
3
1, 0, 5, 8, 9, 16, 17, 24, 29, 36, 41, 48, 53, 60, 65, 76, 85, 92, 101, 108, 121, 132, 141, 152, 161, 176, 189, 200, 213, 224, 241, 256, 269, 284, 297, 316, 333, 348, 365, 380, 401, 420, 437, 456, 473, 496, 517, 536, 557, 576, 601, 624, 645, 668, 689, 716, 741, 764, 789, 812, 841, 868
OFFSET
2,3
COMMENTS
The X pattern (8c5s2 type) is a pattern in which 8 curves cover 5 coins, and is one of a total of 13 such distinct patterns that appear in a tightly-packed 3 X 3 square array of coins of identical size; each of the 8 curves is a circular arc lying along the edge of one of the 5 coins, and the 8 curves are joined end-to-end to form a continuous area.
a(n) is the total number of voids (spaces among coins) left after packing X patterns into an n X n array of coins. The maximum number of X patterns that can be packed into an n X n array of coins is A231056 and coins left is A231064.
a(n) is also the total number of voids left after packing "+" patterns (8c5s1 type) into an n X n array of coins. See illustration in links.
FORMULA
Empirical g.f.: x^2*(4*x^16 -8*x^15 +4*x^14 -4*x^13 +8*x^12 -8*x^11 +8*x^10 -4*x^9 +4*x^6 -5*x^5 +2*x^4 +2*x^3 -6*x^2 +2*x -1) / ((x -1)^3*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Nov 27 2013
PROG
(Small Basic)
x[2] = 0
d1[3] = 1
For n = 2 To 100
If Math.Remainder(n+2, 5) = 1 Then
d2 = 0
Else
If Math.Remainder(n+2, 5) = 4 Then
d2 = -1
else
d2 = 1
EndIf
EndIf
d1[n+2] = d1[n+1] + d2
x[n+1] = x[n] + d1[n+1]
If n >= 13 And Math.Remainder(n, 5) = 3 Then
x[n] = x[n] - 1
EndIf
If n=6 or n>=16 And Math.Remainder(n, 5)=1 Then
x[n] = x[n] + 1
EndIf
V = (n-1)*(n-1) - x[n]*4
TextWindow.Write(V+", ")
EndFor
CROSSREFS
Cf. A008795, A230370 (3-curves); A074148, A227906, A229093, A229154 (4-curves); A001399, A230267, A230276 (5-curves); A229593, A228949, A229598, A002620, A230548, A230549, A230550 (6-curves).
Sequence in context: A047616 A287551 A375713 * A314576 A045221 A046287
KEYWORD
nonn
AUTHOR
Kival Ngaokrajang, Nov 03 2013
STATUS
approved