login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047616
Numbers that are congruent to {0, 1, 5} mod 8.
1
0, 1, 5, 8, 9, 13, 16, 17, 21, 24, 25, 29, 32, 33, 37, 40, 41, 45, 48, 49, 53, 56, 57, 61, 64, 65, 69, 72, 73, 77, 80, 81, 85, 88, 89, 93, 96, 97, 101, 104, 105, 109, 112, 113, 117, 120, 121, 125, 128, 129, 133, 136, 137, 141, 144, 145, 149, 152, 153, 157
OFFSET
1,3
FORMULA
From Wesley Ivan Hurt, Jun 09 2016: (Start)
G.f.: x^2*(1+4*x+3*x^2)/((x-1)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-30+3*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-3, a(3k-1) = 8k-7, a(3k-2) = 8k-8. (End)
MAPLE
A047616:=n->(24*n-30+3*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047616(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 1, 5}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
Table[8 n + {0, 1, 5}, {n, 0, 200}]//Flatten (* Vincenzo Librandi, Jun 11 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {0, 1, 5, 8}, 60] (* Harvey P. Dale, Jul 20 2024 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 1, 5]]; // Wesley Ivan Hurt, Jun 09 2016
(PARI) a(n)=n\3*8+[-3, 0, 1][n%3+1] \\ Charles R Greathouse IV, Jul 19 2016
CROSSREFS
Sequence in context: A213881 A179832 A334919 * A287551 A375713 A231065
KEYWORD
nonn,easy
STATUS
approved