login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230518
Smallest prime p = a(n) such that the sum of p and the next prime has n distinct prime factors.
2
2, 5, 13, 103, 1783, 15013, 285283, 9699667, 140645501, 4127218087, 100280245063, 5625398263453, 202666375276361, 11602324073775431, 438272504610946003, 21828587281891445047, 1156915125940246587913, 66595945348137856405747, 4632891063696575353839163
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..100
FORMULA
a(n) > (1/2 + o(1)) n^n. - Charles R Greathouse IV, Oct 22 2013
EXAMPLE
30 = 13+17 is the earliest case with 3 prime divisors, so a(3) = 13.
MATHEMATICA
Clear[a]; a[_] = 0; Do[p = Prime[k]; q = Prime[k+1]; n = PrimeNu[p+q]; If[a[n] == 0, a[n] = p; Print["a(", n, ") = p = ", p, ", q = ", q]], {k, 1, 10^9}]; Table[a[n], {n, 1, 10}]
PROG
(PARI) a(n) = {p = 2; while (omega(p+nextprime(p+1)) != n, p = nextprime(p+1)); p; } \\ Michel Marcus, Oct 22 2013
(PARI) step(Fvec)=my([n, f]=Fvec, v=List(), t); for(i=1, #f~, t=f; t[i, 2]++; listput(v, [n*f[i, 1], t]); t=f; t[i, 1]=nextprime(t[i, 1]+1); if(i==#f~||t[i, 1]<t[i+1, 1], listput(v, [n*t[i, 1]/f[i, 1], t]))); Vec(v);
bad(n)=precprime(n/2)+nextprime(n/2)!=n || isprime(n/2);
a(n)=if(n==1, return(2)); my(f=matrix(n, 2, i, j, if(j>1, 1, prime(i))), v=[[factorback(f), f]], t); if(!bad(v[1][1]), return(precprime(v[1][1]/2))); v=vecsort(step(v[1]), 1); while(bad(v[1][1]), v=vecsort(concat(step(v[1]), v[2..#v]), 1, 8)); precprime(v[1][1]/2); \\ Charles R Greathouse IV, Oct 22 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(11)-a(19) from Charles R Greathouse IV, Oct 22 2013
STATUS
approved